(Paris, Gauthier-Villars et Cie, 1940). 4to. Without wrappers. In: ""Comptes Rendus Hebdomadaires des Séances de L'Academie des Sciences"", Tome 210, No 17. Pp. (589-) 616. (Entire issue offered). Stamp on front page. Weil's paper: pp. 592-594.
First printing of Weil's importent paper in which he introduced the concept of Weil-pairing, giving a proof of the Riemann hypothesis for curves over finite fields.The Weil pairing is a pairing (bilinear form, though with multiplicative notation) on the points of order dividing n of an elliptic curve E, taking values in nth roots of unity. The Weil pairing is used in number theory and algebraic geometry, and has also been applied in elliptic curve cryptography and identity based encryption.""The Weil pairing, first introduced by André Weil in 1940, plays an important role in the theoretical study of the arithmetic of elliptic curves and Abelian varieties. It has also recently become extremely useful in cryptologic constructions related to those objects.""(Victor S. Miller).The Weil pairing is used in number theory and algebraic geometry, and has also been applied in elliptic curve cryptography and identity based encryption.
(Paris, Gauthier-Villars), 1936. 4to. No wrappers. In: ""Comptes Rendus Hebdomadaires des Séances de L'Academie des Sciences"", Tome 203, No 1. Pp. (5-) 136 (entire issue offered). Weil's paper: pp. 22-24. Disbound and paper a bit fragile.
First printing of an importent paper on compact groups.""J. von Neumann an A. Weil, by different methods, obtained simultaneously the uniqueness in the case of of locally compact groups, A. Weil indicating at the same time how the procedure of Haar could be extended to general locally compact groups. It is also A. Weil (in the paper offered) who obtained the condition for the existence of a relatively invariant measure on a homogenous space, and showed finally that the existence of a ""measure"" (endowed with reasonable properties) on a separated topological group, implies ipse facto that the group is locally precompact.""(Bourbaki ""Elements of the istory of Mathematics"", p. 233).
Paris, Hermann & Cie, Frontwrapper: 1937, Titlepage: 1938. Lex8vo. Uncut and unopened in orig. printed wrappers. Stamps on foot of titlepage. In the series ""Act. Sci. Industrielles 551, Paris, 1937"".
First edition of Weil's importent work on uniform topological spaces where he gives the first explicit definition of uniform structure""His most widely used innovation was in point set topology, namely the idea of uniform spaces. Such a space has no metric giving a distance between points, yet it makes sense to talk of different sequences ""converging at the same rate"" to different points. In particular there is a well-defined notion of uniform convergence of a series of functions from one uniform space to another."" (DSB).
REVUE. Georges Bataille, Georges Mounin, René Leibowitz, Pierre Klossowski, Jean Bayet, Eric Weil, Roland-P. Caillois, Michel Carrouges, André Dhôtel, Jean Piel, Jean-M. Poursin, Eric Weil...
Reference : 19189
Critique, n° 37, juin 1949. Un fascicule in-8°, broché.
[19189]
Paris 1948 Hermann & Cie Soft cover 1st Edition
Couverture souple, 25 x 17 cm, 85 pp., français, 1ère édition, état du livre: Très bon. Actualités scientifiques et industrielles 1041. Publications de l'institut de mathématique de l'université de Strasbourg. VII . Sur les Courbes Algébriques et les Variétés qui s'en déduisent
Anthony Richard - Weil Cynthia,Mann Barry - Aber Georges,Salvet André
Reference : 22350
(1963)
Tropicales 1963
Bon état Format Coquille
non indiqué. Non daté. In-8. En feuillets. Etat d'usage, Couv. convenable, Dos satisfaisant, Intérieur frais. En feuillets paginés de la page 663 à 672. Feuillets maintenus par une agrafe en angle (voir photo.. . . . Classification Dewey : 840-Littératures des langues romanes. Littérature française
Classification Dewey : 840-Littératures des langues romanes. Littérature française