François Maspéro , Algorithme Malicorne sur Sarthe, 72, Pays de la Loire, France 1978 Book condition, Etat : Très Bon broché, sous couverture imprimée à rabats éditeur verte, illustrée d'une figure d'un rouage de machine In-8 1 vol. - 175 pages
1ere édition, 1er tirage, 1978 "Contents, Chapitres : Introduction - 1. Les mathématiques : Mathématiques et expérience - Mathématique et logique - Mathématique et langage - 2. La géométrie - 3. La mécanique et la physique : Mécanique et géométrie - Mécanique et physique - La physique - 4. La philosophie - 5. Le fait et l'exemple : La stratégie - L'intégration - 6. Critique de la logique mathématique : Les ""vraies mathématiques"" - Poincaré face à la crise des fondements des mathématiques, 1905-1912 - Conclusion et bibliographie - Selon Wikipedia : ""Pendant les six dernières années de sa vie (à partir de 1905), Poincaré participe activement aux débats sur les fondements qui traversaient à l'époque la communauté mathématique. Il n'a jamais essayé d'y contribuer sur le plan technique, mais certaines de ses idées ont eu une influence indéniable. L'un de ses contradicteurs, Bertrand Russell, écrira en 1914 : « Il n'est pas possible d'être toujours juste en philosophie ; mais les opinions de Poincaré, justes ou fausses, sont toujours l'expression d'une pensée puissante et originale, servie par des connaissances scientifiques tout à fait exceptionnelles ». Entre autres, à cause de son refus d'accepter l'infini actuel, cest-à-dire la possibilité de considérer l'infini comme une entité achevée et non simplement comme un processus qui peut se prolonger arbitrairement longtemps, Poincaré est considéré par beaucoup d'intuitionnistes comme un précurseur. Poincaré n'a cependant jamais remis en cause le tiers exclu, et rien n'indique qu'il aurait pu adhérer à une refondation aussi radicale des mathématiques que celle que proposera Luitzen Egbertus Jan Brouwer. La position de Poincaré a évolué. Dans une période précédente, il s'est intéressé aux travaux de Georg Cantor, dont les travaux sur la construction des réels et la théorie des ensembles s'appuient de façon essentielle sur un infini actuel, au point de superviser la traduction en français d'une partie des articles de ce dernier (en 1871, 1883), et d'utiliser ses résultats dans son mémoire sur les groupes kleinéens (1884). Il s'intéresse également aux travaux de David Hilbert sur l'axiomatisation : il fait, en 1902, une recension soignée et très louangeuse des Fondements de la géométrie (1899). En 1905 et 1906, Poincaré réagit, de façon assez polémique, à une série d'articles de Louis Couturat sur les « principes des mathématiques » dans la Revue de métaphysique et de morale, articles qui rendaient compte des Principles of Mathematics de Bertrand Russell (1903). Russell finira par intervenir lui-même dans le débat""." papier à peine jauni, sinon bel exemplaire, frais et propre