139 books for « klein felix »Edit

1 2 3 4 ... 6 Next Exact page number ? OK

‎Klein (Félix) - Jean Dieudonné et P. François Russo‎

Reference : 101098

(1974)

‎Le programme d'Erlangen - Considérations comparatives sur les recherches géométriques modernes - Préface de Jean Dieudonné, postface du P. François Russo, Groupes et géométrie, la genèse du programme d'Erlangen de Félix Klein , dans la collection Discours de la Méthode (Théorie des groupes, Espaces de Riemann, Spineurs)‎

‎Gauthier-Villars Malicorne sur Sarthe, 72, Pays de la Loire, France 1974 Book condition, Etat : Bon broché, sous couverture imprimée éditeur blanche et orange, illustrée d'une figure blanche sur fond marron In-8 1 vol. - 86 pages‎


‎ 1ere édition française, édition originale princeps, 1974 Contents, Chapitres : Table, préface de Jean Dieudonné (6 pages), xiv, Texte, 72 pages - Félix Klein : Considérations comparatives sur les recherches géométriques modernes - François Russo : Groupes et géométrie, la genèse du programme d'Erlangen de Félix Klein (conférence donnée au Palais de la Découverte le 4 mai 1968 - Felix Christian Klein (25 avril 1849 à Düsseldorf 22 juin 1925 à Göttingen) est un mathématicien allemand, connu pour ses travaux en théorie des groupes, en géométrie non euclidienne, et en analyse. Il a aussi énoncé le très influent programme d'Erlangen, qui ramène l'étude des différentes géométries à celle de leurs groupes de symétrie respectifs. - La synthèse de Klein de la géométrie comme étude des invariants sous un groupe de transformations donné, connue sous le nom de programme d'Erlangen (1872), influença profondément l'évolution de la géométrie et des mathématiques dans leur ensemble. Ce programme était le cours inaugural de Klein comme professeur à Erlangen. Il propose une vision unifiée de la géométrie. Klein décrit en détail comment les propriétés centrales d'une géométrie donnée se traduisent par l'action d'un groupe de transformations. Aujourd'hui, cette vision est devenue tellement banale dans l'esprit des mathématiciens qu'il est difficile de juger de son importance, d'apprécier sa nouveauté et de comprendre l'opposition à laquelle elle a dû faire face. (source : Wikipedia) - En 1872, à l'âge de 23 ans, Klein obtient une chaire à l'Université d'Erlangen9 grâce à l'aide providentielle de Clebsch, qui voit en lui l'un des futurs plus grands mathématiciens de son temps. Selon la coutume, il doit donner une conférence inaugurale. Il prépare un texte qui circule initialement entre un nombre restreint de lecteurs, sous le titre de Vergleichende Betrachtungen über neuere geometrische Forschungenn. Il s'agit du fameux Programme d'Erlangen dans lequel il propose un point de vue révolutionnaire sur la géométrie. Bien que ses qualités d'enseignant soient appréciées à Erlangen, il n'a au début que deux élèves dans sa classe. Dans un premier temps, le Programme d'Erlangen n'est pas bien accueilli, sans doute parce que le manuscrit n'a pas bénéficié d'une large diffusionn. Félix Klein ne reste que trois ans à Erlangen il n'a pas beaucoup d'élèves , mais a assez de temps à consacrer à la recherche. En 1872, Clebsch succombe à la diphtérie à l'âge de 39 ans. Klein s'occupe alors de la publication de la revue Mathematische Annalen responsabilité qu'il assumera presque jusqu'à la fin de sa vie et parvient à en faire la plus importante publication mathématique de l'époque, ce qui contribue à renforcer son aura scientifique à l'échelle internationale. En 1875, une nouvelle chaire lui est proposée à Munich (source : Wikipedia) couverture à peine jaunie sinon propre, intérieur frais et propre, signature de l'ancien propriétaire sur la page de titres, cela reste un bon exemplaire‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR20.00 (€20.00 )

‎Klein (Félix) - J. Griess (traduction)‎

Reference : 100117

(1896)

‎Leçons sur certaines questions de géométrie élémentaire - Possibilité des constructions géométriques, Les polygones réguliers, Transcendance des nombres e et pi, démonstration élémentaire , Rédaction française autorisée par l'auteur par J. Griess (1ere édition française, 1896)‎

‎Librairie Nony et Cie à Paris Malicorne sur Sarthe, 72, Pays de la Loire, France 1896 Book condition, Etat : Bon relié, demi-toile noire ordinaire, pièce de titre manuelle au dos In-8 1 vol. - 99 pages‎


‎17 figures dans le texte en noir et blanc 1ere édition française, édition originale princeps, 1896 "Contents, Chapitres : Texte, 96 pages et 3 pages de tables - Préface du traducteur (Alger, septembre 1895), préface de F. Klein, Goettingue, Pâques 1895 - Introduction : Constructions théoriques et pratiques - Forme algébrique du problème - 1. Possibilité de la construction des expressions algébriques : Equations algébriques résolubles par radicaux carrés - Le problème de Delos et la trisection d'un angle quelconque - La division du cercle en parties égales - La construction du polygone régulier de 17 côtés - Généralités sur les constructions d'expressions algébriques - 2. Les nombres transcendants et la quadrature du cercle : Existence des nombres transcendants, démonstration de M. Cantor - Revue historique des essais de calcul et de construction de Pi - La transcendance du nombre ""e"" - La transcendance du nombre Pi - L'intégrale et la construction géométrique de Pi - Felix Christian Klein (25 avril 1849 à Düsseldorf 22 juin 1925 à Göttingen) est un mathématicien allemand, connu pour ses travaux en théorie des groupes, en géométrie non euclidienne, et en analyse. Il a aussi énoncé le très influent programme d'Erlangen, qui ramène l'étude des différentes géométries à celle de leurs groupes de symétrie respectifs. - La synthèse de Klein de la géométrie comme étude des invariants sous un groupe de transformations donné, connue sous le nom de programme d'Erlangen (1872), influença profondément l'évolution de la géométrie et des mathématiques dans leur ensemble. Ce programme était le cours inaugural de Klein comme professeur à Erlangen. Il propose une vision unifiée de la géométrie. Klein décrit en détail comment les propriétés centrales d'une géométrie donnée se traduisent par l'action d'un groupe de transformations. Aujourd'hui, cette vision est devenue tellement banale dans l'esprit des mathématiciens qu'il est difficile de juger de son importance, d'apprécier sa nouveauté et de comprendre l'opposition à laquelle elle a dû faire face. (source : Wikipedia)" reliure modeste mais en bon état, petit manque de carton sur le bas du plat supérieur (2 cms de haut, 1 mm de large) sans gravité, pièce de titre manuelle au dos, intérieur sinon frais et propre, le papier n'est qu'à peine jauni, cela reste un bon exemplaire de la 1ere édition française de ce texte essentiel de Félix Klein, peu courant en édition originale‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR45.00 (€45.00 )

‎"KLEIN, FELIX.‎

Reference : 39154

(1871)

‎Über die sogenannte Nicht-Euclidische Geometri. (Erster-) Zweiter Aufsatz. - [THE NON-EUCLIDEAN GEOMETRY OF KLEIN]‎

‎(Leipzig, B.F. Teubner, 1871 a. 1873). Without wrappers, (wrappers blank to Second Part) as published in ""Mathematische Annalen. Hrsg. von Felix Klein, Walter Dyck, Adolph Mayer."" Vol. IV, pp. 573-625 and vol. VI, pp. 112-145. Kept in a cloth-portfolio.‎


‎First edition. In these groundbreaking papers Klein established that if Euclidean geometry is consistent then non-Euclidean geometry is consistent as well and he introduces the adjectives ""parabolic"", ""elliptic"", and ""hyperbolic"" for the respective geometries of Georg Riemann, of Nicolai Lobachevsky, of C.F. Gauss and Janos Bolyai. ""Cayley's idea (that metrical geometry is part of projective geometry) was taken over by Felix Klein (1849-1925) and generalized so as to include the non-Euclidan geometries. Klein, a professor at Göttingen, was one of the lading mathematicians in Germany during the last part of the nineeeeteenth and first part of the twentieth century. During the years 1869-70 he larned the work of Lobatchevsky, Bolyai, von Staudt, and Cayley"" however, even in 1871he did not know Laguerre's result. It seemed to him to be posible to subsume the non-Euclidean geometries, hyperbolic, and double elliptic geometry, under projective geometry byexploiting Cayley's idea. He gave a sketch og his thoughts in a paper of 1871, and then developed them in two papers (1871 a. 1873, the ppers offered here). Klein was the first to obtain models of non-Euclidean geometries."" (Morris Kline). - Sommerville, Bibliography of Non-Euclidean Geometry p.45 (1871) and p. 49 (1873).‎

Logo ILAB

Phone number : +45 33 155 335

DKK6,500.00 (€871.79 )

‎Klein (Félix) - J. Griess (traduction)‎

Reference : 83440

(1931)

‎Leçons sur certaines questions de géométrie élémentaire - Possibilité des constructions géométriques, Les polygones réguliers, Transcendance des nombres, démonstration élémentaire , Rédaction française autorisée par l'auteur par J. Griess (3eme édition, 1931)‎

‎Librairie Vuibert Malicorne sur Sarthe, 72, Pays de la Loire, France 1931 Book condition, Etat : Bon broché, sous couverture imprimée éditeur crème In-8 1 vol. - 96 pages‎


‎17 figures dans le texte en noir et blanc 3eme édition de la traduction française, 1931 "Contents, Chapitres : Texte, 96 pages - Introduction : Constructions théoriques et pratiques - Forme algébrique du problème - 1. Possibilité de la construction des expressions algébriques : Equations algébriques résolubles par radicaux carrés - Le problème de Delos et la trisection d'un angle quelconque - La division du cercle en parties égales - La construction du polygone régulier de 17 côtés - Généralités sur les constructions d'expressions algébriques - 2. Les nombres transcendants et la quadrature du cercle : Existence des nombres transcendants, démonstration de M. Cantor - Revue historique des essais de calcul et de construction de Pi - La transcendance du nombre ""e"" - La transcendance du nombre Pi - L'intégrale et la construction géométrique de Pi - Felix Christian Klein (25 avril 1849 à Düsseldorf 22 juin 1925 à Göttingen) est un mathématicien allemand, connu pour ses travaux en théorie des groupes, en géométrie non euclidienne, et en analyse. Il a aussi énoncé le très influent programme d'Erlangen, qui ramène l'étude des différentes géométries à celle de leurs groupes de symétrie respectifs. - La synthèse de Klein de la géométrie comme étude des invariants sous un groupe de transformations donné, connue sous le nom de programme d'Erlangen (1872), influença profondément l'évolution de la géométrie et des mathématiques dans leur ensemble. Ce programme était le cours inaugural de Klein comme professeur à Erlangen. Il propose une vision unifiée de la géométrie. Klein décrit en détail comment les propriétés centrales d'une géométrie donnée se traduisent par l'action d'un groupe de transformations. Aujourd'hui, cette vision est devenue tellement banale dans l'esprit des mathématiciens qu'il est difficile de juger de son importance, d'apprécier sa nouveauté et de comprendre l'opposition à laquelle elle a dû faire face. (source : Wikipedia)" couverture propre mais avec une trace de pliure sur le bas du plat inférieur, ainsi qu'une trace d'étiquette de prix au bas du même plat, traces de déchirures au dos, la couverture reste en bon état, l'intérieur est propre, papier jauni, signature de l'ancien propriétaire sur le haut de la premiere page, cela reste un bon exemplaire de la 3eme édition française de 1931 de ce texte fondamental de Félix Klein sur les constructions géométriques, cette édition chez Vuibert est devenue peu courante.‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR15.00 (€15.00 )

‎"KLEIN, FELIX.‎

Reference : 44504

(1877)

‎Weitere Untersuchungen über das Ikosaeder. - [FELIX KLEIN ON THE ICOSAHEDRON]‎

‎Leipzig, B.G. Teubner, 1877. 8vo. Original printed wrappers, no backstrip and a small nick to front wrapper. In ""Mathematische Annalen. Begründet durch Rudolf Friedrich Alfred Clebsch. XII. [12]. Band. 4. Heft."" Entire issue offered. Internally very fine and clean. [Klein:] Pp. 503-60. [Entire issue: Pp. pp. 433-576].‎


‎Frist printing of Klein's paper on the icosahedron.""A problem that greatly interested Klein was the solution of fifth-degree equations, for its treatment involved the simultaneous consideration of algebraic group theory, geometry, differential equations, and function theory. Hermite, Kronecker, and Brioschi had already employed transcendental methods in the solution of the general algebraic equation of the fifth degree. Klein succeeded in deriving the complete theory of this equation from a consideration of the icosahedron, one of the regular polyhedra known since antiquity. These bodies sometimes can be transformed into themselves through a finite group of rotations. The icosahedron in particular allows sixty such rotations into itself. If one circumscribes a sphere about a regular polyhedron and maps it onto a plane by stereographic projection, then to the group of rotations of the polyhedron into itself there corresponds a group of linear transformations of the plane into itself. Klein demonstrated that in this way all finite groups of linear transformations are obtained, if the so-called dihedral group is added. By a dihedron Klein meant a regular polygon with n sides, considered as rigid body of null volume."" (DSB VII, p. 400).The icosahedron is a regular polyhedron with 20 identical equilateral triangular faces, 30 edges and 12 vertices. It is one of the five Platonic solids.‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,800.00 (€241.42 )

‎"KLEIN, FELIX.‎

Reference : 46199

(1905)

‎Über die Auflösung der allgemeine Gleichungen fünften und sechsten Grades (+) Bericht über den Stand der Herausgabe von Gauss' Werken. Sechster Bericht.‎

‎Leipzig, B. G. Teubner, 1905. 8vo. In the original printed wrappers, without backstrip. In ""Mathematische Annalen, 61. Band, 1. Heft, 1905"". Fine and clean. [Klein:] Pp. 50-71"" Pp. 72-76. [Entire issue: IV, 160 pp].‎


‎First printing of Felix Klein's paper on how to solve fifth and sixth degree equations. Klein considered equations of degree > 4, and was especially interested in using transcendental methods to solve the general equation of the fifth degree. Building on the methods of Hermite and Kronecker, he produced similar results to those of Brioschi and went on to completely solve the problem by means of the icosahedral group. This work led him to write a series of papers on elliptic modular functions, the present paper being one of the last and concluding.As editor of Mathematische Annalen Felix Klein set himself the task of collecting previously unstudied material of Gauss. He organized a campaign to collect materials and enlisted experts in special fields to study them. From 1898 until 1922 he rallied support with fourteen reports, published under the title ""Bericht über den Stand der Herausgabe von Gauss' Werken,"". The present being the sixth. ‎

Logo ILAB

Phone number : +45 33 155 335

DKK2,000.00 (€268.24 )

‎"KLEIN, FELIX.‎

Reference : 41204

(1871)

‎Ueber die sogenannte Nicht-Euklidische Geometrie (+) Ueber die sogenannte Nicht-Euklidische Geometrie. (Zweiter Aufsatz). - [TWO MAIN WORKS ON NON-EUCLIDEAN GEOMETRY]‎

‎Leipzig, B.G.Teubner, 1871 u. 1873. Bound in 2 later full cloth. Small stamp on foot of titlepages.In. ""Mathematische Annalen. In Verbindung mit C. Neumann begründet durch Rudolf Friedrich Alfred Clebsch"", IV. und VI. Band. (4),637 pp. a. (4),642 pp., 6 plates. Klein's papers: pp. 573-625 a. pp. 112-145. Both volumes offered.‎


‎First edition of these 2 papers which unifies the Euclidean and Non-Euclidean geometries, by reducing the differences to expressions of the ""distance function"", and introducing the concepts ""parabolic"", ""elliptic"" and ""hyperbolic"" for the geometries of Euclid, Riemann and of Lobatschewski, Gauss and Bolyai. He further eliminates Euclid's parallel-axiom from projective geometry, as he shows that the quality of being parallel, is not invariant under projections.Klein build his work on Cayley's ""distant measure"" saying, that ""Metrical properties are not properties of the figure per se but of the figure in relation to the absolute."" This is Cayley's idea of the general projective determination of metrics. The place of the metric concept in projective geometry and the greater generality of the latter were described by Cayley as ""Metrical geometry is part of projective geometry."" Cayley's idea was taken over by Felix Klein....It seemed to him to be possible to subsume the non-Euclidean geometries, hyperbolic and double elliptic geometry, under projective geometry by exploring Cayley's idea. He gave a sketch of his thoughts in a paper of 1871, and then developed them in two papers (the papers offered here).Klein was the first to recognize that we do not need surfaces to obtain models of non-Euclidean geometries....The import which gradually emerged from Klein's contributions was that projective geometry is really logically independent of Euclidean geometry....By making apparent the basic role of projective geometry Klein paved the way for an axiomatic development which could start with projective geometry and derive the several metric geometries from it.""(Morris Kline).The offred volumes cntains other importen mathematical papers by f.i. by Klebsch, Lipschitz, Neumann, Noether, Thomae, Gordan, Lie, Du Bois-Raymond, Cantor (Über trigonometrische Reihen),etc.(Sommerville: Bibliography of Non-Euclidean Geometry p. 45 a. 49.)‎

Logo ILAB

Phone number : +45 33 155 335

DKK12,500.00 (€1,676.52 )

‎"KLEIN, FELIX.‎

Reference : 47137

(1877)

‎Die Mechanik nach den Principien der Ausdehnungslehre. - [FELIX KLEIN ON THE ICOSAHEDRON]‎

‎Leipzig, B. G. Teubner, 1877. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 12., 1877. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Title page missing a small piece of paper to the right margin, not affecting text. Very fine and clean. Pp. 503-60. [Entire volume: IV, 576 pp.].‎


‎Frist printing of Klein's paper on the icosahedron.""A problem that greatly interested Klein was the solution of fifth-degree equations, for its treatment involved the simultaneous consideration of algebraic group theory, geometry, differential equations, and function theory. Hermite, Kronecker, and Brioschi had already employed transcendental methods in the solution of the general algebraic equation of the fifth degree. Klein succeeded in deriving the complete theory of this equation from a consideration of the icosahedron, one of the regular polyhedra known since antiquity. These bodies sometimes can be transformed into themselves through a finite group of rotations. The icosahedron in particular allows sixty such rotations into itself. If one circumscribes a sphere about a regular polyhedron and maps it onto a plane by stereographic projection, then to the group of rotations of the polyhedron into itself there corresponds a group of linear transformations of the plane into itself. Klein demonstrated that in this way all finite groups of linear transformations are obtained, if the so-called dihedral group is added. By a dihedron Klein meant a regular polygon with n sides, considered as rigid body of null volume."" (DSB VII, p. 400).The icosahedron is a regular polyhedron with 20 identical equilateral triangular faces, 30 edges and 12 vertices. It is one of the five Platonic solids.The volume contain many other papers by contemporary mathematicians. ‎

Logo ILAB

Phone number : +45 33 155 335

DKK2,200.00 (€295.07 )

‎"KLEIN, FELIX.‎

Reference : 48007

(1879)

‎Über die Transformation der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades (+) Über die Transformation siebenter Ordnung der elliptischen Funktionen. - [FIRST MATHEMATICAL DESCRIPTION OF DESSIN D'ENFANT / DEDEKIND TESSELLATION]‎

‎Leipzig, B. G. Teubner, 1879. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 14., 1879. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Very fine and clean. Pp. 111-172"" Pp. 428-471. [Entire volume: Pp. (4), 576].‎


‎First printing of Felix Klein's two hugely influential papers in which he for the first time presented the first recognizable modern ""dessins d'enfants"". Klein called these diagrams Linienzüge (German, plural of Linienzug ""line-track"", also used as a term for polygon).Dedekind did in 1877 publish a paper in which part of the mathematical background for the ""dessins d'enfants"" was present. It was, however, Klein that fully explored, both mathematical and visual, its potential. ‎

Logo ILAB

Phone number : +45 33 155 335

DKK3,200.00 (€429.19 )

‎"KLEIN, FELIX.‎

Reference : 44503

(1890)

‎Zur Nicht-Euklidischen Geometrie (+) Ueber die Nullstellen der hypergeometrischen Reihe.‎

‎Leipzig, B.G. Teubner, 1890. 8vo. Original printed wrappers, no backstrip and a small nick to front wrapper. In ""Mathematische Annalen. Begründet durch Rudolf Friedrich Alfred Clebsch. XXXVII. [37]. Band. 4. Heft."" Entire issue offered. Internally very fine and clean. [Klein:] Pp. 544-72"" 573-90. [Entire issue: Pp. pp. 465-604].‎


‎First printing of Klein's important contribution to non-Euclidean geometry. Klein saw a fundamental unity in the subject of non-Euclidean geometry. Rather than a heterogeneous collection of abstruse mathematics, non-Euclidean geometry was in Klein's view a ""concrete discipline"".For over two millennia geometry had been the study of theorems which could be proved from Euclid's axioms. However, in the beginning of the 19th century it was proved that there exist other geometries than that of Euclid. Motivated by the emergence of the new geometries of Bolyai, Lobachevsky, and Riemann, Klein proposed to define a geometry, not by a set of axioms, but instead in terms of the transformations that leave it invariant" according to Klein, a geometric structure consists of a space together with a particular group of transformations of the space. A valid theorem in that particular geometry is one that holds under this group of transformations. This controversial idea did not only give a more systematic way of classifying the different geometries, but also gave birth to new geometric structures such as manifolds. Landmark Writtings in Western Mathematics 1640-1940, p.544-52.‎

Logo ILAB

Phone number : +45 33 155 335

DKK2,250.00 (€301.77 )

‎SERRET (Paul), SERRET (J.-C.), KLEIN (Félix), CREMONA (Luigi), FOLIE (F.), TURQUAN (L.-V.)‎

Reference : 14143

‎Recueil factice : mathématiques et géométrie‎

‎ 10 ouvrages en un volume in-8, pagination multiple, demi-basane verte, dos à nerfs, titre doré, tranches mouchetées (nerfs et coiffes frottés, quelques épidermures, coins émoussés, mouillure au premier ouvrage). ‎


‎Contient : 1. SERRET (Paul), Des Méthodes en géometrie. Paris, Mallet-Bachelier, 1855, XV-144 pp. Edition originale. - 2. SERRET (J.-C.), Discours sur la profession de notaire. Valence, Impr. d'A.- F. Joland, 1840, 28 pp. Edition originale, peu courant. - 3. SERRET (Paul), Théorie nouvelle géometrique et mécanique des lignes à double courbure. Paris, Mallet-bachelier, 1860, XIX-276 pp. Edition originale. - 4. LAS de Félix Klein, mathématicien allemand. - 5. KLEIN (Félix), Zur Theorie der Liniencomplexe des ersten und zweiten Grades [publié dans Mathematische Annalen 11, Band 2, Heft 1870]. Die allegemeine Lineare Transformation der Liniencoordinaten [ibid.]. Über die Abbildung der Complexflächen vierter Ordnung und vierter Classe [ibid.]. - 6. CREMONA (Luigi), Prolusione ad un corso di geometria superiore. Milano, Editori del Politecnico, 1861. 23 pp. - 7. FOLIE (M. F.), Théorie nouvelle du mouvement d'un corps libre. Bruxelles, Bulletins de l'Académie Royale de Belgique, s.d., 50 pp. - 8. CREMONA (Luigi). Rappresentatzione della superficie di Steiner e delle superficie gobbe di terzo grado sopra un piano. Milan, 1867. 10 pp. - 9. TURQUAN (L.-V.), Intégration d'un système particulier de deux équations simultanées aux dérivées partielles du premier ordre. Bruxelles, 1880. 14 pp. Rare. * Voir photographie(s) / See picture(s). * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve. ‎

Phone number : 09 78 81 38 22

EUR600.00 (€600.00 )

‎KLEIN Félix‎

Reference : M12767

‎AU PAYS DE " LA VIE INTENSE "‎

‎ P , Plon , 1911 , in12 br , 386 pp Impressions de voyage Nord Est des Etats Unis , Canada. Langue: Français ‎


Nord - Sud - Kervignac

Phone number : 06 98 91 56 56

EUR15.00 (€15.00 )

‎KLEIN,Felix‎

Reference : 8132

‎AU PAYS DE LA VIE INTENSE,‎

‎ PARIS PLON,1904,IN12 reliure demie basane,dos lisse frotté,386p.A bord de la "Lorraine", 1er séjour à New-York, de New-York à Montréal par Boston, une visite au Canada, un évêque réactionnaire aux Etats-Unis, Buffalo et le Niagara, Chicago, Péoria, Mgr Spalding, St-Louis, chez le président Roosevelt, etc., ‎


‎texte bon, ‎

Livres Anciens Komar - Meounes les Montrieux

Phone number : 33 04 94 63 34 56

EUR25.00 (€25.00 )

‎"KLEIN, FELIX.‎

Reference : 40593

(1893)

‎Vergleichende Betrachtungen über neuere geometrische Forschungen. - [THE ERLANGER PROGRAMM IMPROVED]‎

‎Leipzig, B.G. Teubner, 1893. 8vo. Orig. printed wrappers (no backstrip) to Heft 1, 43. Bd. of ""Mathematische Annalen"", the whole issue pp. IV,144. Klein's paper: pp.63-100. Frontwrapper repaired with the same kind of paper and without loss of letters. The sewing somewhat loose. Frontwrapper loose.‎


‎This is the second printing of Klein's famous ""Erlanger Programm"" having Klein's own improvements.For over two millennia geometry had been the study of theorems which could be proved from Euclid's axioms. However, in the beginning of the 19th century it was proved that there exist other geometries than that of Euclid. Motivated by the emergence of the new geometries of Bolyai, Lobachevsky, and Riemann, Klein proposed to define a geometry, not by a set of axioms, but instead in terms of the transformations that leave it invariant" according to Klein, a geometric structure consists of a space together with a particular group of transformations of the space. A valid theorem in that particular geometry is one that holds under this group of transformations. This controversial idea did not only give a more systematic way of classifying the different geometries, but also gave birth to new geometric structures such as manifolds. The Erlanger Programm was translated into six languages in the following two decades, and it has had an immense influence on geometry up to and throughout the 20th century.‎

Logo ILAB

Phone number : +45 33 155 335

DKK850.00 (€114.00 )

‎"KLEIN, FELIX.‎

Reference : 44526

(1886)

‎Neue Untersuchungen im Gebiete der elliptischen Functionen.‎

‎Leipzig, B.G. Teubner, 1886. 8vo. Original printed wrappers, no backstrip and a small nick to front wrapper. In ""Mathematische Annalen. Begründet durch Rudolf Friedrich Alfred Clebsch. XXVI. [26]. Band. 3. Heft."" Entire issue offered. Internally very fine and clean. [Klein:] Pp. 455-464. [Entire issue: Pp. 309-464].‎


‎First printing of Klein's paper on elliptic functions. ""One of the leading mathematicians of his age, Klein made many stimulating and fruitful contributions to almost all branches of mathematics, including applied mathematics and mathematical physics. Moreover, his extensive activity contributed greatly to making Göttingen the chief center of the exact sciences in Germany. An opponent of one sided approaches, he possessed an extraordinary ability to discover quickly relationships between different areas of research and to exploit them fruitfully."" (DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,200.00 (€160.95 )

‎"KLEIN, FELIX.‎

Reference : 47155

(1879)

‎Ueber die Transformation elfter Ordnung der elliptischen Functionen. (i.e. ""On the eleventh order transformation of elliptic functions""). - [BELYI'S THEOREM]‎

‎Leipzig, B. G. Teubner, 1879. 8vo. In the original wrappers without backstrip. In ""Mathematische Annalen"", Volume 15, heft 3 + 4, 1879. Entire issue offered. Very fine and clean. Pp. 533-554. [Entire issue: 305-576 + 1 folded plate].‎


‎First printing of what later was to be known af Belyi's theorem or Belyi functions named after G. V. Belyi in 1979. Belyi functions and dessins d'enfants dates to the work of Felix Klein" he used them in this study an 11-fold cover of the complex projective line with monodromy group PSL.‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,800.00 (€241.42 )

‎ROUSSEAU LEONTINE, DESCHAMPS HENRY, KLEIN FELIX‎

Reference : R110027715

(1893)

‎LA SEMAINE DES FAMILLES 34EME ANNEE N°52 - MARIANNE - REINE DE JUDEE DE LEONTINE ROUSSEAU, LA TUTELLE DE MARGUERITE DE HENRY DESCHAMPS, LA MORT ET LES FUNERAILLES III DE FELIX KLEIN, VENDREDI SAINT DE G. LEVAVASSEUR, PAROLES D'OR DE SWIFTF‎

‎Au bureau du journal.. 25 MARS 1893. In-4. En feuillets. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. Paginé de 817 à 824. Lecture en colonnes. Illustrée de quelques gravures en noir et blanc.. . . . Classification Dewey : 70.4413-Magasin pittoresque, universel et mosaïque‎


‎Revue universelle. Sous la direction de Victor Lecoffre. Classification Dewey : 70.4413-Magasin pittoresque, universel et mosaïque‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR19.80 (€19.80 )

‎KLEIN FELIX‎

Reference : RO30091856

‎LES PARABOLES EVANGELIQUES‎

‎EDITIONS SPES. non daté. In-4. Cartonnage d'éditeurs. Etat d'usage, Coins frottés, Dos satisfaisant, Intérieur frais. 62 pages. Nombreuses illustrations bi-couleurs dans le texte et hors texte.. . . A l'italienne. Classification Dewey : 200-RELIGION‎


‎"""Des fleurs et des fruits"", bibliothèque pour les jeunes dirigée par L'abbé Félix Klein. Illustrations de M. Lavergne. Classification Dewey : 200-RELIGION"‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR29.80 (€29.80 )

‎KLEIN FELIX‎

Reference : R320114241

(1974)

‎LE PROGRAMME D'ERLANGEN.‎

‎GAUTHIER-VILLARS. 1974. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 772 pages.. . . . Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES‎


‎"COLLECTION ""DISCOURS DE LA METHODE"". / NOTA : Felix Christian Klein est un mathématicien allemand, connu pour ses travaux en théorie des groupes, en géométrie non euclidienne, et en analyse. Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES"‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR29.80 (€29.80 )

‎Klein Félix‎

Reference : 5583

‎Le Cardinal Lavigerie et ses uvres d'Afrique‎

‎ Tours Mame Grand in-8 demi-toile ‎


Logo SLAM Logo ILAB

Phone number : 02 47 64 12 77

EUR30.00 (€30.00 )

‎"KLEIN, FELIX.‎

Reference : 60095

(1883)

‎Ueber einen liniengeometrischen Satz (+) Zur Interpretation der complexen Elemente in der Geometrie (+) Eine Uebertragung des Pascal'schen Satzes auf Raumgeometrie (+) Ueber den allgemeinen Functionsbegriff und dessen Darstellung durch eine willkürli...‎

‎Leipzig, B. G. Teubner, 1883. 8vo. Bound with the original wrappers in contemporary half calf with gilt lettering to spine. In ""Mathematische Annalen"", Volume 22., 1883. Entire volume offered. Wear to extremities. Library label pasted on to top of spine. Small library stamp to lower part of verso of title page. Very fine and clean. VI, 592 pp.‎


‎First printing of Klein's papers on geometry.""One of the leading mathematicians of his age, Klein made many stimulating and fruitful contributions to almost all branches of mathematics, including applied mathematics and mathematical physics. Moreover, his extensive activity contributed greatly to making Göttingen the chief center of the exact sciences in Germany. An opponent of one sided approaches, he possessed an extraordinary ability to discover quickly relationships between different areas of research and to exploit them fruitfully."" (DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,500.00 (€201.18 )

‎"KLEIN, FELIX.‎

Reference : 30419

(1872)

‎Vergleichende Betrachtungen über neuere geometrische Forschungen. Programm zum Eintritt in die philosophische Facultät und den Senat der k. Friedrich-Alexanders-Universität. - [THE ERLANGER PROGRAMM]‎

‎Erlangen, Andreas Deichert, 1872. 8vo. (233x152mm). Uncut with the original printed front-wrapper (loose) - back-wrapper missing. Fine and clean throughout. 48 pp.‎


‎First edition of the ""Erlanger Programm"". For over two millennia geometry had been the study of theorems which could be proved from Euclid's axioms. However, in the beginning of the 19th century it was proved that there exist other geometries than that of Euclid. Motivated by the emergence of the new geometries of Bolyai, Lobachevsky, and Riemann, Klein proposed to define a geometry, not by a set of axioms, but instead in terms of the transformations that leave it invariant" according to Klein, a geometric structure consists of a space together with a particular group of transformations of the space. A valid theorem in that particular geometry is one that holds under this group of transformations. This controversial idea did not only give a more systematic way of classifying the different geometries, but also gave birth to new geometric structures such as manifolds. The Erlanger Programm was translated into six languages in the following two decades, and it has had an immense influence on geometry up to and throughout the 20th century. Scarce. Landmark Writtings in Western Mathematics 1640-1940, p.544-52.‎

Logo ILAB

Phone number : +45 33 155 335

DKK18,000.00 (€2,414.20 )

‎"KLEIN, FELIX.‎

Reference : 44918

(1870)

‎Zur Theorie der Liniencomplexe des ersten und zweiten Grades (+) Die allgemeine lineare Transformation der Liniencoordinaten (+) Ueber die Abbildung der Complexflächen vierter Ordnung und vierter Classe. - [KLEIN ON LINE COMPLEXES]‎

‎Leipzig, B.G. Teubner, 1870. 8vo. Original printed wrappers, no backstrip. In ""Mathematische Annalen. Herausgegeben von A. Clebsch und C. Neumann. 11. Band. 2. Heft."" Entire issue offered. Minor loss to wrappers, internally fine and clean. [Neumann:] Pp. 182-186. [Entire issue: IV, 191, (1) pp.].‎


‎First printing of these three paper by Klein, in which he for the first time presented his much used theory regarding line complexes, algebraic geometry. ‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,500.00 (€201.18 )

‎"KLEIN, FELIX‎

Reference : 46191

(1905)

‎Beweis für die Nichtauflösbarkeit der Ikosaedergleichung durch Wurzelzeichen.‎

‎Leipzig, B.G. Teubner, 1905. 8vo. Original printed wrappers, no backstrip. In ""Mathematische Annalen. Begründet durch Rudolf Friedrich Alfred Clebsch. 61. Band. 3. Heft."" Entire issue offered. Internally very fine and clean. Pp. 369-371. [Entire issue: Pp. 289-452].‎


‎First printing of Klein's paper on the Icosahedron.""One of the leading mathematicians of his age, Klein made many stimulating and fruitful contributions to almost all branches of mathematics, including applied mathematics and mathematical physics. Moreover, his extensive activity contributed greatly to making Göttingen the chief center of the exact sciences in Germany. An opponent of one sided approaches, he possessed an extraordinary ability to discover quickly relationships between different areas of research and to exploit them fruitfully."" (DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,200.00 (€160.95 )

‎"KLEIN, FELIX.‎

Reference : 48043

(1883)

‎Ueber einen liniengeometrischen Satz (+) Zur Interpretation der complexen Elemente in der Geometrie (+) Eine Uebertragung des Pascal'schen Satzes auf Raumgeometrie (+) Ueber den allgemeinen Functionsbegriff und dessen Darstellung durch eine willkürlic...‎

‎Leipzig, B. G. Teubner, 1883. 8vo. Bound in recent full black cloth with gilt lettering to spine. In ""Mathematische Annalen"", Volume 22., 1883. Entire volume offered. Library label pasted on to pasted down front free end-paper. Small library stamp to lower part of title title page and verso of title page. Very fine and clean. VI, 592 pp.‎


‎First printing of Klein's papers on geometry.""One of the leading mathematicians of his age, Klein made many stimulating and fruitful contributions to almost all branches of mathematics, including applied mathematics and mathematical physics. Moreover, his extensive activity contributed greatly to making Göttingen the chief center of the exact sciences in Germany. An opponent of one sided approaches, he possessed an extraordinary ability to discover quickly relationships between different areas of research and to exploit them fruitfully."" (DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK1,200.00 (€160.95 )
1 2 3 4 ... 6 Next Exact page number ? OK
Get it on Google Play Get it on AppStore
Search - klein felix
The item was added to your cart
You have just added :

-

There are/is 0 item(s) in your cart.
Total : €0.00
(without shipping fees)
What can I do with a user account ?

What can I do with a user account ?

  • All your searches are memorised in your history which allows you to find and redo anterior searches.
  • You may manage a list of your favourite, regular searches.
  • Your preferences (language, search parameters, etc.) are memorised.
  • You may send your search results on your e-mail address without having to fill in each time you need it.
  • Get in touch with booksellers, order books and see previous orders.
  • Publish Events related to books.

And much more that you will discover browsing Livre Rare Book !