Amstellodami [Amsterdam], apud Janssonio-Waesbergios, 1728, in-4, [16]-226-[2]-184 pp, 43 pl, Demi-basane postérieure (fin XVIIIe, début XIXe s.), dos lisse et fileté, Ces deux tomes des Opuscula posthuma constituent une partie des Opera Reliqua, qui avaient été elles-mêmes publiées au sein des oeuvres collectives (Opera varia), éditées sous la direction de Gravesande en 1724-1728. Elles ont paru pour la première fois en 1703 (Leyde, Cornelius Boutesteyn). Elles contiennent, en tête de volume, la Dioptrica, illustrée de 19 planches, qui constitue une théorie complète du télescope et du microscope, accordant une grande place à la fabrication du verre et au polissage des lentilles. L'ouvrage s'achève sur la Descriptio automati planetarii dans laquelle Huygens fait usage des fractions continues "pour rapporter entre elles, avec des approximations croissantes, les périodes des différents corps célestes" (Houzeau et Lancaster) ; cette partie est illustrée des 4 planches du célèbre automate planétaire conçu par Huygens et construit par Van Ceulen en 1682. Les autres traités sont : - Commentarii de formandis poliendisque vitris ad telescopia (3 pl.) ; - Dissertatio de coronis et parheliis (8 pl.) ; - De motu corporum ex percussione (5 pl.) ; - De vi centrifuga (4 pl.) ; Huygens démontre ici les théorèmes relatifs à la force centrifuge qu'il avait exposé en 1673 dans l'Horologium oscillatorium. Le mathématicien, astronome et physicien néerlandais Christiaan Huygens (1629-1695) fut l'inventeur du télescope aérien, ainsi appelé parce que l'oculaire et l'objectif n'étaient plus reliés par un tube continu. Cet instrument permettait "de se passer du tube en disposant convenablement les lentilles le long d'un simple support longitudinal, destiné à les maintenir dans la position convenable. Dès cet instant, le problème de la construction des lunettes astronomiques se trouva transformé. Aucune limite de dimension n'était plus imposé aux lunettes dites aériennes; tout au moins ces limites ne dépendaient plus que de l'habileté des opticiens à tailler des verres de très grande distance focale" (Daumas, Les instruments scientifiques aux XVIIe et XVIIIe siècles, p. 46). Ce télescope permit à Huygens de découvrir la lune de Saturne et d'observer la véritable forme des anneaux de cette planète. Dos usé, rousseurs claires. DSB VI, 612. Houzeau & Lancaster, 3427. Poggendorff, I, 1165. Couverture rigide
Bon [16]-226-[2]-184 pp., 43 pl.
Martinus Nijhoff. 1908. In-4. Br. avec jaq. Nombreuses figures mathématiques. 367 p. Exemplaire offert par les directeurs de la Société Hollandaise des Sciences à Mr. L. Ranvier. Membre étranger de la Société. Très bon état intérieur. Jaquette déchirée et consolidée. Manque au dos de la jaquette.
Amsterdam. Swets & Zeitlinger. 1967. Publiées par la Société Hollandaise des Sciences. Fort in-4. Br. Tome 19. 1937. Mécanique théorique et physique de 1666 à 1695. Huygens à l'Académie Royale des Sciences. Très nbrs figures. 687 p. Excellent état intérieur. Couv. légèrement frottée. Dos plié.
La Haye, Martinus Nijhoff, 1888, in-4to, XIV + 621 p., Frontispice (portrait de Constantijn Huijgens et ses enfants), tampon de bibliothèque sur titre, notices (additions) au crayon papier au début, dans la genealogie de la famille Huygens, brochure originale, dos fendu, jaquette abîmée.
Phone number : 41 (0)26 3223808
La Haye, Martinus Nijhoff 1920 557pp., avec figures dans le texte, 28cm., relié en couv.cart. d'amateur, plats marbrés, dos en toile noire, tranches noires, qqs. pages peu tachées (dans le marge du texte), poids: 1.7kg., W113839
La Haye, Martinus Nijhoff 1910 297pp., avec figures dans le texte, 28cm., brochure muette, tranches noires, qqs. pages peu tachées (dans le marge du texte) et qqs. rousseurs, pages toujours non coupées, exemplaire nominatif ("appartenant à M. C.N.J. Moltzer J. Ezn."), poids: 1kg., W113840
La Haye, Martinus Nijhoff 1916 Complet en 2 volumes physiques, clxvii + 905pp. (pagination continuéee), avec figures dans le texte, 28cm., brochures muettes, tranches noires, qqs. pages peu tachées (dans le marge du texte) et qqs. rousseurs, pages toujours non coupées, exemplaire nominatif ("appartenant à M. C.N.J. Moltzer J. Ezn."), poids: 3.7 kg., W113840
A Paris, chez Jean Moreau, 1702. In-12 de (24)-277-(9) pp, 5 planches, veau brun, dos orné à nerfs, pièce de titre en maroquin rouge (reliure de l'époque).
Première édition française du Cosmotheoros sive de terris coelestibus, earumque ornatu, conjecturae, dont l'originale latine fut publiée en 1698. S'inspirant des thèses coperniciennes, Huygens développe l'idée d'autres formes de vie autour d'autres soleils. « The argument of the book is very methodically set forth and its earnestness suggests that Huygens did indeed assign a very high degree of probability to these conjectures. In the Copernican world system the earth holds no privileged position among the other planets. It would therefore be unreasonable to suppose that life should be restricted to the earth alone. There must be life on the other planets and living beings endowed with reason who can contemplate the richness of the creation, since in their absence this creation would be senseless and the earth, again, would have an unreasonably privileged position » (DSB VI, 611).Ex-libris Charles Lacour. Petit accident à une coiffe et aux coins, des rousseurs. Bon exemplaire.
La Haye, Martinus Nijhoff, 1888-97, in-4, 7 vol. (sur 22), demi-chagrin noir à coins, dos à nerfs orné de filets dorés, tête dorée (reliure de l'époque), Les tomes 1 à 7 concernent la correspondance de Huygens de 1638 à 1675. Les "Oeuvres complètes" furent publiées en 22 volumes, jusqu'en 1950. Cet exemplaire du minéralogiste Charles Friedel (1832-99) est complet des volumes publiés de son vivant. Très bel exemplaire Couverture rigide
Bon 7 vol. (sur 22)
0. Bruxelles, Librairie Nationale d'Art et d'Histoire, 1933, in-8°, 45 pp, bibliography in the notes, index, sewn, original wrapper, separate off printof an article from 'Revue belge d'archéologie et d'histoire de l'art (1933 fasc. I) printed in 300 copies only.
"LEIBNIZ (LEIBNITZ), G.F. - CHRISTIAAN HUYGENS - JOHANN BERNOULLI - JACOB BERNOULLI ET AL. - THE DISCOVERY OF THE ""CATENARY CURVE"" , THE ""LOGARITHMIC CURVE"" AND THE ""POLAR COORDINATES"".
Reference : 41859
(1691)
Leipzig, Grosse & Gleditsch, 1691. 4to. Contemp. full vellum. Faint handwritten title on spine. a small stamp on titlepage. In: ""Acta Eruditorum Anno MDCLXXXXI"". (8),590,(6) pp. and 13 (of 15) folded engraved plates. The 2 first plates lacks, but they do not belong to the papers listed.Leibniz' papers: pp.277-281 a. 1 plate, pp. 435-439. Johann Bernoulli: pp. 274-276 a. 1 plate. Huygens: pp. 281-282. - Jacob Bernoulli: pp. 282-290 a. 1 plate.
All papers first apperance. All 5 of extreme importence in the development of the Calculus. Leibniz' 2 papers on the catenary curve (paper 1-2 offered here) was written at the instigation of Jacques Bernoulli. Following the example of Blaise Pascal, who had initiated, in 1658, a contest for the construction of the cycloid, Leibniz also provoked the geometers of his time, by challenging them to submit, at the fixed date of mid-1691, their geometric method for the construction of the catenary curve. Leibniz later provided the answer, followed by Johann Bernoulli and Huygens.'These two papers are a historical account of the origin of the study of this transcendental curve, and, at the same time, the first physical-geometric construction showing the species-relationship between the catenary and the logarithmic curves, as two companion curves" one arithmetic, the other geometric. All of the differentials of the catenary curve, are arithmetic means of corresponding differentials of the logarithmic curve" and, all of the differentials of the logarithmic curve, are geometric means of the catenary.'""The Catenary is the form of a hanging fully flexible rope or chain (the name comes from ""catena"", which means 'chain'), suspended on two points. The interest in this curve originated with Galileo, who thought that is was a parabola. Young Christiaan Huygens proved in 1646 that this cannot be the case. What the actual form was remained an open question till 1691, when Leibniz, Johann Bernoulli and the then much older Huygens sent solutions to the problem to the ""Acta"" (Jakob Bernoulli, 1690, Johann Bernoulli 1691, Huygens 1691 and Leibniz 1691), - these 4 1691-papers offered here - in which the previous year Jakob Bernoulli had challenged mathematicians to solve it. As published, the solutions did not reveal the methods, but through later publications of manuscripts these methods have been known. Huygens applied with great ( paper 4) virtuosity the by then classical methods of 17th century infinitesimal mathematics, and he needed all his ingenuity to reach a satisfactory solution. Leibniz ( the papers 1-2) and Bernoulli (paper 3), applying the new Calculus, found the solutions in a much direct way. In fact, the catenary was a test-case between the old and the new style in the study of curves, and only because the champion of the old style was a giant like Huygens, the test-case can formally be considered as ending in a draw."" (Grattan-Guiness in ""From the Calculus to Set Theory, 1630-1910."").The paper by JACOB BERNOULLI ( no. 5 offered here) is a milestone papers as it marks the invention of the ""SYSTEM OF POLAR COORDINATES"" with points located by reference to a fixed point and a line through that point. Although newton had earlier also devised such a coordinate system (in 1671), his work was not known, so that the credit for the discovery generally goes to Bernoulli. (Parkinson, Breakthroughs (1691).Further papers contained in this volume of Acta Eruditorum:DENYS PAPIN: Mecanicorum de Viribus Motricibus sententia, asserta a D. Papino adversius C.G.G. L. (Leibniz) objectiones. pp. 6-13. The plate lacks. - and Dion. Papini Observationes quaedam circa materias ad Hydraulicam spectantes. Pp. 208-213 a. 1 plate. This importent paper is part of the LEIBNIZ-PAPIN-CONTROVERSY.JACOB BERNOULLI: Specimen Calculi Differentialis in dimensione Parabolæ helicoidis, ubi de flexuris curvarum in genere, carundem evolutionibus. Pp. 13-22. The plate lacks. - and J.B. Demonstratio Centri Oscillationis ex Natura Vectis, reperta occassione eorum, quæ super hac materia in Historia Literaria Roterodamensi recensentur, articulo...Pp.317-321.LEIBNIZ: O.V.E. Additio ad Schediasma de Medii Resistentia publicatum in Actis mensis Febr. 1889. Pp. 177-178. and O.V.E. Quadratura Arithmetica Communis Sectionum Conicarum quæ centrum babent,...Pp. 178-182 a. 1 plate.TSCHIRNHAUS: Singularia Effecta Vitri Caustici bipedalis, quod omnia magno sumtu hactenus constructa specula ustoria virtute superat, per D.T. Pp. 517-520
Revue d'Histoire des Sciences - Germaine Aujac - Jean-Louis Gardies sur Euxode et Dedekind - Michel Blay sur Christiaan Huygens
Reference : 101026
(1984)
Presses Universitaires de France - P.U.F. , Revue d'Histoire des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1984 Book condition, Etat : Bon broché, sous couverture imprimée éditeur bleu ciel grand In-8 1 vol. - 95 pages
quelques figures dans le texte en noir et blanc 1ere édition, 1984 Contents, Chapitres : 1. Articles : Germaine Aujac : Le langage formulaire dans la géométrie grecque - Jean-Louis Gardies : Euxode et Dedekind - Michel Blay : Christiaan Huygens et les phénomènes de la couleur - 2. Documentation, informations, analyses - Jean Seidengart : Une nouvelle traduction anglaise de la Théorie du ciel de Kant Couverture propre, légères pliures aux coins de la couverture, sinon bel exemplaire, intérieur frais et propre, papier à peine jauni - paginé 98 à 192
Cambridge University Press Malicorne sur Sarthe, 72, Pays de la Loire, France 1990 Book condition, Etat : Bon hardcover, editor's black printed binding, title in a blue frame, no dust-jacket grand In-8 1 vol. - 249 pages
many black and white text-figures 2nd reprinted edition, 1990 Contents, Chapitres : Contents, Preface, xi, Text, Notes, Bibliography, Index, 238 pages - Introduction - 1. Accelerated motion : Gravity : Mersenne's problem - Riccioli's attempt - 2. Accelerated motion : Centrifugal force : De Vi Centrifuga - The conical pendulum - Precursors - 3. Accelerated motion : Curvilinear fall : the Galilean treatise - The isochronism of the cycloid - The pendulum clock - 4. Evolutes : The rectification of the cycloid - The evolute of the cycloid - The evolute of the parabola - The general formula - 5. Curvature : Apollonius and minimal lines - Newton and measure - Leibniz and structure - 6. Rectification : Priority and the parabola - Evolutes and rectification - Priority and the pendulum - Dimension reduction and pi - Geometry and the calculus - 7. Diversions : Sea trials - The universal measure - The compound pendulum - Further discoveries - Caustics - 8. Conclusion near fine copy, the editor's binding is fine, inside is fine, clean and unmarked, without dust-jacket
2. Amsterdam, 1930, small in-8°, sewn, silk ribbon, original colored wrapper, (backwrapper slightly soiled). 20 nn pp.
"LEIBNIZ (LEIBNITZ), G.F. - JOHANN BERNOULLI - JAKOB BERNOUILLI. - CHRISTIAAN HUYGENS ET AL. - INTRODUCING THE LEMNISCATE CURVE.
Reference : 41704
(1694)
Leipzig, Grosse & Gleditsch, 1694. 4to. Contemp. full vellum. Faint handwritten title on spine. a small stamp on titlepage. In: ""Acta Eruditorum Anno MDCXCIV"". (2),518 pp.. and 11 folded engraved plates. As usual with various browning to leaves and plates. The entire volume offered. Leibniz's papers: pp. 311-316, pp. 364-375. - Johann Bernoulli's papers: pp. 200-206, pp. 394-99, pp. 435-437, pp. 437-441. - Huygen's papers: pp. 338, pp. 339-41. - Jakob Bernoulli's papers: pp. 262-276, pp. 276-280, pp. 336-338, pp. 391-400. Some mispaginations.
All papers first appearance, dealing with, and clarifying the problems and the new applications of Leibniz' inventions of the differential- and integral calculus.In the papers Leibniz shows how to reduce linear first order ordinary differential equations to quadratures. I the other paper he gives a general method of finding the envelope of a family of curves, which helped to spread the theory of plane curves.In the groundbreaking paper offered here, Jakob Bernoulli introduces THE LEMNISCATE, a symmetric self-intersecting curve resembling a figure eight and defined by the condition that the product of the distance of anay point on the curve from two fixed points is (d/2)2, where d is the distance between the fixed points.""Jacob Bernoulli was fascinated by curves and the calculus, and one curve bears his name - the ""lemniscate of Bernoulli"", given by the polar equation r2=a cos 2""0"". The curve was described in the Acta Eruditorum of 1694 as resembling a figure eight or a knotted ribbon (lemniscus). However the curve that most caught his fancy was the logarithmic spiral....he swowed that it had several strioking properties not noted before...it is easy to appreciate the feeling that led Bernoulli to request that the ""spira mirabils"" be engraved on his tombstone together with the inscription ""Eadem mutata resurgo"" (Though changed, I arise again the same)."" (Boyer in his History of Mathematics).