Librairie Scientifique et Technique Albert Blanchard , (Imprimerie Prudhomme, Grenoble) Malicorne sur Sarthe, 72, Pays de la Loire, France 1967 Book condition, Etat : Bon broché, sous couverture imprimée éditeur verte grand In-8 1 vol. - 160 pages
nouveau tirage de 1967 "Contents, Chapitres : Johann Carl Friedrich Gauß (Carolus Fridericus Gauss en latin), né le 30 avril 1777 à Brunswick et mort le 23 février 1855 à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. - ""Disquisitiones generales circa superficies curvas"". (Recherches générales sur les surfaces courbes) ; 8 octobre 1827, Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 6 (classis mathematicae), 1828, p. 99146, und Dieterich, Gottingae (Göttingen) 1828. La première édition française de ""Recherches générales sur les surfaces courbes"", est parue chez Bachelier, Paris 1852. Nous proposons un reprint de 1967 de la seconde édition française, Grenoble, Imprimerie Prudhomme, 1870. - Recherches générales sur les surfaces courbes - Mémoire sur les trajectoires minima et Etude des surfaces continues - Il est dans les années suivantes le premier à envisager la possibilité de géométries non euclidiennes, mais ne publiera jamais ce travail initial, « par crainte des cris des Béotiens », selon ses propres termes. En 1818, Gauss commence une étude géodésique de l'État de Hanovre. Depuis le sommet de la colline surplombant les ruines du château de Lichtenberg, non loin de la ville minière de Salzgitter, il repère différentes mires géodésiques, la plus éloignée étant distante d'une centaine de kilomètres. Un monolithe (Gaußstein) y commémore le travail de l'illustre mathématicien. Cette mission mènera au développement des distributions normales pour décrire les erreurs de mesure et qui comporte un intérêt dans la géométrie différentielle. Son theorema egregium (« théorème remarquable », en latin) permit d'établir une propriété importante de la notion de courbure. - La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten. En mécanique, les surfaces matérielles dont la courbure de Gauss est non nulle sont plus rigides que celles dont la courbure de Gauss est nulle, toutes choses égales par ailleurs. En termes courants, les coques sont plus rigides que les plaques. En effet, une déformation d'une coque implique une modification de sa métrique, ce qui n'est pas le cas (au premier ordre) pour une plaque ou plus généralement pour une surface sans courbure de Gauss. (source : Wikipedia)" "bords des plats de la couverture et dos à peine jaunis, infimes traces de pliures aux coins des plats, intérieur sinon frais et propre, exemplaire en grande partie non coupé, papier à peine jauni avec quelques rousseurs sur les premières et dernières pages, cela reste un bel exemplaire du reprint de la 2eme édition française de 1870 d'un texte majeur de Carl Friedrich Gauss, 1777-1855 où il définit ce qu'on appelle communément aujourd'hui ""la courbure de Gauss""."
Gauss (Carl Friedrich) - A.-C.-M. Poullet-Delisle, traduction
Reference : 100860
(1979)
Librairie Scientifique et Technique Albert Blanchard , Chez Courcier) Malicorne sur Sarthe, 72, Pays de la Loire, France 1979 Book condition, Etat : Bon broché, sous couverture imprimée éditeur crème petit In-4 1 vol. - 524 pages
reprint en fac-similé de 1979 de l'édition Courcier de 1807 "Contents, Chapitres : Note du traducteur, épitre, préface de l'auteur, table des matières, xx, errata, ii, Texte, 502 pages - Des nombres congrus en général - Des congruences du premier degré - Des résidus des puissances - Des congruences du second degré - Des formes et des équations du second degré - Recherches ultérieures sur les formes - Applications des recherches précédentes - Des équations qui déterminent les divisions du cercle - Additions de l'auteur et notes, tables - Johann Carl Friedrich Gauß (traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le 30 avril 1777 à Brunswick et mort le 23 février 1855 à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. - Disquisitiones arithmeticae est un livre de théorie des nombres écrit par le mathématicien allemand Carl Friedrich Gauss. Sa première publication date de 1801. Dans ce livre, Gauss réorganise le domaine en incluant des résultats obtenus par certains de ses prédécesseurs, comme Fermat, Euler, Lagrange ou Legendre, mais ajoute surtout des contributions importantes, qu'il s'agisse de notions (comme celle de congruence), de théorèmes (comme les critères de construction à la règle et au compas d'un polygone régulier dans un cercle) ou de démonstrations (comme les premières preuves de la loi de réciprocité quadratique). Lu et retravaillé par de nombreux mathématiciens au cours des deux derniers siècles, le livre a instauré des normes de rigueur nouvelles et a eu un impact décisif sur des sujets aussi variés que la théorie de Galois, les tests de primalité ou la théorie des idéaux. Il a été traduit en plusieurs langues et reste une source de réflexion vivante, comme en témoignent les travaux récents de Manjul Bhargava en 2004. (source : Wikipedia)" quelques rousseurs sur le bord des plats, et d'infimes traces de pliures sur les bords de la couverture, intérieur sinon très frais et propre, cela reste un bel exemplaire de ce reprint en fac-similé d'un des textes les plus importants des mathématiques
"GAUSS, CARL FRIEDRICH. - THE METHOD OF LEAST SQUARES IN GERMAN.
Reference : 38464
(1865)
Hannover, Carl Meyer, 1865. 4to. Contemp. modest hcloth. 2 orig. photographs mounted as frontispiece (Gauss-medal). 279,72,(2) pp. 3 plates, 6 tables. Internally clean.
First German edition of this milestone in mathematical statistics, first published in Latin as ""Theoria motus corporum coelestium in sectinibus conicis solem ambientum. 1809."" - In this work Gauss revealed for the first time his method of least squares. On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the planetoid Ceres, but could only observe it for few days before it was lost in the glare of the Sun until the end of the year. After so many months of not being observed it was not possible to calculate with existing methods at which position it should reappear. However Gauss, at an age of 24, astounded when he in December predicted the exact location at which Ceres again could be observed. Gauss did not reveal how he had calculated the orbit of Ceres. First in 1809 Gauss published his second book ""Theoria motus corporum coelestium in sectionibus conicis solem ambientium"" (the offered item) in which he revealed his new method of orbit calculation. In the first part he dealt with differential equations, conic sections and elliptic orbits, while in the second part, the main part of the work, he showed how to estimate and then to refine the estimation of a planet's orbit using a new method involving minimizing the sum of squared residuals, e.g., the method of least squares. He was able to prove the correctness of the method under the assumption of normally distributed errors. It is here that the Gaussian curve, expressing statistical distribution in probablility, makes its appearance. This work, along with the 'Discuisitiones', was the fruit of the triumphal decade in Gauss' life and established his reputation as a mathematical and scientific genius of the first order. Hald: History of Mathematical Statistics 1750-1930, pp.351-357.
Paris, Hermann et fils, 1915, in-8, (2)-IV-38-(2) pp, Cartonnage moderne à la bradel, titre doré en long, Rare édition française donnée par Laugel du "Allgemeine Aufloessung der Aufgabe die Theile einer gegebnen Flaeche so abzubilden" publié en 1825 dans les Astronomiche Abhandlungen de Schumacher. Il s'agit du premièr article de Gauss sur le problème géodésique de la projection cartographique, donc d'un article prélude aux Disquisitiones generales circa superficies curvas, dans lesquelles Gauss résout superbement ce problème de géométrie différentielle en formulant son théorème remarquable. "In 1822 a prize offered by the Copenhagen Academy stimulated [Gauss] to write up these ideas in a paper taht won first place and was published en 1825. This paper, his more detailed Untersuchungen über Gegenstände der höhenr Geodäsie (1844-1847), and geodesic manuscript later published in the Werke were further developed by German geodesists and led to the Gauss-Hrueger projection (1912), a generalization of the transverse Mercator projection, which attained a secure position as a basis for topographic girds taking account the spheroidal shpae of the earth." (DSB, V, p. 303-304). Joli cartonnage moderne de papier à la cuve. Merzbach, Carl Friedrich Gauss. A Bibliography, 1984, p. 48, 1915. Couverture rigide
Bon (2)-IV-38-(2) pp.
Helmstadt, C. G. Fleckeisen, 1799. 4to. Bound uncut in a very nice recent pastiche-binding in brown half calf with elaborately gilt spine and marbled paper covered boards. With repair to title-page, not affecting text. Small restorations to upper margin of leaf A2 and A3. Brownspotted throughout. 39, (1) pp. + engraved plate.
Rare first edition of Gauss's first book in which he proved the fundamental theorem of algebra which states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Gauss received his doctorate degree for this work, which is considered his first great work. It marks the beginning of an extraordinary ten years often referred to as his 'Triumphal Decade' with landmark achievements such as the publication of 'Disquisitiones Arithmeticae' and the calculation of the orbit of the newly discovered planet Ceres. On june 16, 1799, even before the thesis was published, Gauss was awarded the title Doctor Philosophiae after the usual requirements of an oral examination, particularly tedious to Gauss, was dropped. In a letter to Bolyai, Gauss's close friend, Gauss described his thesis: ""The title describes the main objective of the paper quite well though I devote to it only about a third of the space. The rest mainly contains history and criticisms of the works of other mathematicians (name d'Alembert, Bougainville, Euler, de Foncenex, Lagrange, and the authors of compendia - the latter will presumably not be too happy) about the subject, together with diverse remarks about the shallowness of contemporary mathematics"" ""Professor Pfaff, Gauss's formal research supervisor, shared with Gauss an interest in the foundations of geometry, but it is mere speculation that the two discussed this topic. Gauss's dissertation is about the fundamental theorem of algebra. The proof and discussion avoid the use of imaginary quantities through the work is analytic and geometric in nature"" its underlying ideas are most suitably expressed in the complex domain. Like the law of quadratic reciprocity, the fundamental theorem of algebra was a recurring topic in Gauss's mathematical work - in fact, his last mathematical paper returned to it, this time explicitly using complex numbers."" (Gauss, A Biographical Study, p. 41). ""There is only one thing wrong with this landmark in Algebra. The first two words in the title would imply that Gauss had merely added a 'new' proof to others already known. He should have omitted ""nova"". His was the first proof . Some before him had published what they supposed were proofs of this theorem - usually called the fundamental theorem of algebra - but logical and mathematical rigor Gauss insisted upon a proof, and gave the first"" (Bell, Men of Mathematics, p. 32) ""Gauss ranks, together with Archimedes and Newton, as one of the greatest geniuses in the history of mathematics."" (Printing & the Mind of Man). Dibner 114
Grenoble, Imprimerie de Prudhomme, 1870, in-4, 160 pages, Broché, couverture jaune imprimée de l'éditeur, L'un des plus grands textes de géométrie différentielle du XIXe siècle. Rare seconde édition française de la traduction d'Émile Roger des Disquisitiones generales circa superficies curvas de Gauss parues en 1828 dans les Commentationes societatis regiae scientiarum gottingensis. Une première traduction française fut donnée en 1852 dans les Nouvelles annales de mathématiques. La traduction de Roger parut une première fois en 1855, suivie "de notes et d'études sur divers points de la théorie des surfaces et sur certaines classes de courbes". L'édition de 1870 publie à l'identique la traduction des Disquisitiones, mais les "notes" et "études" de Roger ont été amendées et modifiées. "Gauss's interest in geodesy led him to write his General investigations of curved surfaces, which gave the definitive treatment of the differential geometry of surfaces lying in three-dimentional space. It also advanced the radical concept that a surface is a space in itself - a concept implicating the existence of a non-euclidian geometry" (Norman, 880 pour la première édition). Bon exemplaire, tel que paru. Rousseurs sur la couverture. Merzbach, Carl Friedrich Gauss. A Bibliography, 1984, p. 42, 1870a. DSB V, p. 302-304. Couverture rigide
Bon 160 pages
Göttingen, Dieterich, 1828. Small 4to. Extracted from: 'Commentationes Societatis Regiae Scientiarum Gottingensis', Volume 6, pp.99-146. 4to. Modern half morocco with gilt spine lettering. Fine and clean throughout.
First edition of the work which inspired one of the greatest breakthroughs in geometry since Euclid.Euler established the theory of surfaces in his 'Recherches sur la courbure des surfaces', 1767. But Euler's treatment of surfaces is not invariant under a natural notion of isometry with his notion of curvature, for example, the plane and cylinder have different curvatures, although one surface can be bent into the other without stretching or contracting. Such two surfaces are locally alike and one would naturally demand that geometry on these two isometric surfaces are the same. Another way of viewing this is to say that geometry on the surface depends on the geometry of the particular space, in which the surface is embedded.In this work Gauss took a fundamentally different approach to the study of surfaces" in contrast to Euler he represented the points of a surface in terms of two external parameters. Gauss then derived his own notions of the fundamental quantities of surfaces, e.g. arc length, angle between curves, and curvature. The Gauss curvature is related to the Euler curvature, but possesses a fundamentally different property, namely that it is intrinsic, e.g. isometric surfaces have the same curvature at all points. Or, in other words: Geometry (in Gauss' notion) on the surface is independent of the particular geometry of the ambient space. This remarkable result is known as Gauss' ""theorema egregium"". With this work Gauss established a whole new (and more proper) theory of surfaces. In the paper Gauss derived several important theorems about the length, area, and angles of figures on surfaces. But the ""theorema egregium"" has deep roots in the foundation of geometry and was to initiate one of the greatest breakthroughs in geometry since Euclid. To Bernhard Riemann (a student of Gauss) this result suggested that a surface could be regarded as a space in itself with its own geometry, having its own notion of distance, angles, etc. independent of the geometry of some other space containing the surface. This idea became the corner stone of Riemann's famous 'Ueber die Hypothesen, welche der Geometrie zu Grunde liegen', 1867.Norman 880.
S.l., RBA, (2018). Un vol. au format in-8 (238 x 163 mm) de 163 pp. Reliure d'édition de plein cartonnage illustré.
''Carl Friedrich Gauss fut baptisé Le Prince des mathématiciens, un titre qui jamais ne lui fut disputé dans les deux siècles qui suivirent sa mort. Parmi les avancées considérables dont il est à l'origine, on retiendra particulièrement celles relatives à la théorie des nombres. La construction à la règle et au compas d'un polygone régulier à 17 côtés, qui occupait les mathématiciens depuis la Grèce classique, constitue par ailleurs l'une de ses premières grandes découvertes''. Très belle condition.
"GAUSS, CARL FRIEDRICH & NIELS HENRIK ABEL - ANNOUNCING ""THE PRINCIPLE OF LEAST CONSTRAINT"".
Reference : 41607
(1829)
(Berlin, G. Reimer, 1829). 4to. No wrappers. Extracted from ""Journal für die reine und angewandte Mathematik. Hrsg. von A.L. Crelle"", Bd. 4. - Gauss' paper: pp. 232-35. - Abel's papers: pp. 236-278 and pp. 309-348.
First printing of probably Gauss' most importent work in physics by presenting his ""Principle of Least Action"" , which states that the motion of a system of points which are influenced both by each other and by outside conditions is such as to maximize the agreement with free motion, given the existent constraint. The work is based on his Potential Theory.""In it (the present paper) Gauss stated that the law of least constraint: the motion of a system departs a little as possible from free motion, where departure, or constraint, is measured by the sum of products of masses times the squares of their deviations from the path of free motion. He presented it merely as a new formulation equivalent to the well-known principle of d'Alembert. This work seems obviously related to the old meditations on least aquares, but Gauss wrote to Olbers on 31 January 1829 thai it was inspired by studies of capillarity and other physical problems."" (Kenneth O. May in DSB).The two papers (first printings) by Abel (book-lenghts memoirs) are his last works - he died 1829 and they were published after his death - on the theory of ""elliptic functions"", the discovery of which he shared with Jacobi. In these papers he mentions also the great discoveries published in his memoir 1826 (Memoire sur une proprieté générale d'un classe très-etendu de fonctions transcendentes), which was not published until 1841.Together with these 3 memoirs is found a paper by Alexander von Humboldt: ""Über die bei verschiedenen Völkern üblichen Systeme von Zahlzeichen und über den Ursprung des Stellenwerthes in den indischen Zahlen"", 1829. Pp. 205-231.
"GAUSS, CARL FRIEDRICH and WILHELM WEBER. - TERRESTRIAL MAGNETISM.
Reference : 47035
(1841)
(London, Richard and John E. Taylor, 1841). 8vo. No wrappers. In: ""Scientific Memoirs, selected from Transactions of Foreign Academies of Science... Edited by Richard Taylor."", Vol. II, Part I. Pp. 1-140 and 10, mostly large folded lithographed plates. Gauss a. Weber's memoir: pp. 20-97 with 9 plates (The Magnetic Observatory, Göttingen, Plan of the arrangement of instruments, Drawings of the instruments used and Tables of Observation results). ""Much care has been taken to make the plates... faithful copies of the originals. It has been thought necessary to republish the plates"" (note at end of the memoir).
First English edition of the first published papers from the famous ""Des Magnetischen Vereins im Jahre 1836"" for the study of the magnetism of the earth.""Gauss, one of the keenest and most original mathematical thinkers of all time, was joined by Weber for an intensive study of the nature and intensity of the earth's magnetism.. To enlist the observational help of others, they formed a society of international scope and published their observations annually for a dozen years. As part of their work, a telegraph line was erected in 1834 between the iron-free magnetic observatory and astronomical observatory at Göttingen.""(Dibner, Heralds of Science No. 66).""Gauss and Weber organized the Magnetische Verein (The Magnetic Association, mentioned in the title), which united a worldwide network of observatories. Its Resultate aus den Beobachtungen des magnetischen Vereins appeared in six volumes (1836-1841) and included fifteen papers by Gauss, twenty-three by Weber, and the joint Atlas des Erdmagnetismus (1840). These and other publications elsewhere dealt with problems of instrumentation (including one of several inventions of the bifilar magnetometer), reported observations of the horizontal and vertical components of magnetic force, and attempted to explain the observations in mathematical terms.""(DSB).The offered part contains another importent paper by M.H. JACOBI ""Electro-Magnetic Experiments"", pp. 1-19 and 1 plate which is the first English translation of his importent paper ""Expéeriences électromagnétiques,"" in Bulletin de l’Académie impériale des sciences de St. Pétersbourg, 2 (1837), describingone of the first practical electrical motors.
Berlin, Akademie Verlag, 1977, gr. in-8vo, 202 S., + 4 s./w. Tafeln, Original-Leinenband mit OU.
Phone number : 41 (0)26 3223808
Hamburg, Frid. Perthes & I.H. Besser, 1809. 4to (224 x 261 mm). In a later full cloth binding with gilt lettering to spine and blindtooled borders to boards. Very few occassional brownspots. A fine and clean copy. [Blank], XI, (1), 227, (1), 20, [blank] pp. + 1 folded plate.
First edition of this epochmaking work in mathematical statistics and mathematical and computational astronomy. Here, Gauss revealed for the first time his method of least squares which became “the dominant theme – the leitmotif – of nineteenth-century mathematical statistics” (Stigler, p. 11). Together with his ‘Disquisitiones Arithmeticae’ this work “established his reputation as a mathematical and scientific genius of the first order.” (DSB) Here he presented “an analysis of the problems arising in the determination of the motions of the planets and comets from a limited number of observational data"" (PMM 257 note). ""In this work Gauss systematically developed the method of orbit calculation from three observations he had devised in 1801 to locate the planetoid Ceres, the earliest discovered of the 'asteroids,' which had been spotted and lost by G. Piazzi in January 1801."" (Norman 879). On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the planetoid Ceres, but could only observe it for few days before it was lost in the glare of the Sun until the end of the year. After so many months of not being observed it was not possible to calculate with existing methods at which position it should reappear. Gauss, however, at an age of 24, astounded the world, when in December of that same year he predicted the exact location at which Ceres could again be observed. He did not reveal how he had calculated the orbit of Ceres. Only in 1809, when Gauss published his second book ""Theoria motus corporum coelestium in sectionibus conicis solem ambientium"" (the offered item), did he reveal his new method of orbit calculation. In the first part he dealt with differential equations, conic sections and elliptic orbits, while in the second part, the main part of the work, he showed how to estimate and then to refine the estimation of a planet's orbit using a new method involving minimizing the sum of squared residuals, i.e. the method of least squares. He was able to prove the correctness of the method under the assumption of normally distributed errors. It is here that the Gaussian curve, expressing statistical distribution in probability, makes its first appearance. Sparrow 81. Barchas 792.Norman 879. Dibner 114n. PMM 257 (Mentioned in note). Hald: History of Mathematical Statistics 1750-1930, pp.351-357.
(Göttingen, Dieterich, 1830). 4to. Partly uncut. Spine closed with paperlabel. In: ""Commentarii Societatis Regiae Scientiarum Gottingensis. Classes Mathematica"", Bd. VII. Pp. (39-) 88. Clean and fine.
First appearance of an importent paper in which Gauss introduced a new method in the calculus of variations and a mathematical treatment of forces of attraction.Gauss had worked on physics already before 1831, publishing ""Uber ein neues allgemeines Grundgesetz der Mechanik"" , which contained the principle of least constraint, and ""Principia generalia theoriae figurae fluidorum in statu aequilibrii"" which discussed forces of attraction. These papers were based on Gauss's potential theory, which proved of great importance in his work on physics. He later came to believe his potential theory and his method of least squares provided vital links between science and nature.""In 1830 appeared Principia generalia theoriae figurae fluidorum in statu aequilibrii, his one contribution to capillarity and an important paper in the calculus of variations, since it was the first solution of a variational problem involving double integrals, boundary conditions, and variable limits.""(DSB).Dunnington, no. 95.- The memoir was reprinted in Ostwald's Klassiker No. 135.
Göttingen, Dieterischen Buchhandlung, 1837. 8vo. Original blue blank boards. Uncut. The first leaves a bit brownspotted. (2),103 pp., 11 tables a. 10 lithographed plates (also showing the magnetic observatory, its equipment and instruments).
First edition of the first volume reporting the results from ""magnetische verein"", which was set up by Gauss and Weber under the inspiration from Humboldt.""Gauss and Weber organized the Magnetische Verein, which united a worldwide network of observatories. Its Resultate aus den Beobachtungen des magnetischen Vereins appeared in six volumes (1836–1841) and included fifteen papers by Gauss, twenty-three by Weber, and the joint Atlas des Erdmagnetismus (1840). These and other publications elsewhere dealt with problems of instrumentation (including one of several inventions of the bifilar magnetometer), reported observations of the horizontal and vertical components of magnetic force, and attempted to explain the observations in mathematical terms."" (DSB).
Berlin, P. Stankiewicz, 1887. Cont. hcloth, rebacked with old spine preserved and with original printed wrappers pasted on covers. V,(2),290 pp. A few pencil underlinings.
First German edition of Gauss' ""Theoria Combinationis observationum erroribus minimis obnoxiae"" (2819-22) and with 7 supplements on the ""method of least squares"" from Gauss' other writings.
in-8 (240x160), XII-VIII-380 p. , illustré de 2 planches H.T. dont une dépliante , relié demi basane époque , dos manquant , cachet
Johann Carl Friedrich Gauss né le 30 avril 1777 à Brunswick et mort le 23 février 1855 à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé «le prince des mathématiciens», il est considéré comme l'un des plus grands mathématiciens de tous les temps. P2-1B
Paris, Mallet-Bachelier, 1855, in-8, de (8), 167 et (1) pages, demi-chagrin moderne, dos lisse portant une pièce de titre (couvertures d'origine conservées), Première édition française, rare, de ce texte qui propose en langue française la théorie à l'origine de toutes nos statistiques modernes, mathématiques et sociales. Le traducteur, Joseph Bertrand, regroupe six mémoires de Gauss dans lesquels le mathématicien allemand aborde la théorie des moindres carrés, théorie initiée par Legendre en arithmétique et exploité, pour la première fois par lui-même au sein d'une théorie des probabilités dans sa Theoria motus corporum coalestium parue en 1809. Forte rousseur sur l'ensemble de l'exemplaire. Couverture rigide
Bon de (8), 167 et (1) pages
Inter Nationes, Bonn-Bad Godesberg Malicorne sur Sarthe, 72, Pays de la Loire, France 1977 Book condition, Etat : Bon broché, sous couverture imprimée à rabats éditeur blanche In-8 1 vol. - 128 pages
16 planches hors-texte (complet) et de nombreuses figures dans le texte, notamment sur la chronologie en fin d'ouvrage, 1 portrait de Gauss en frontispiece 1ere édition française, 1977 "Contents, Chapitres : 1. La vie : Enfance et scolarité - Etudes - De retour à Brunswick - Professeur à Göttingen - Mesures sur le terrain - Collaboration avec Wilhelm Weber - Etudes tardives et vieillesse - 2. L'oeuvre scientifique : Mathématiques - Astronomie - Géodésie - Physique - 3. Rôle et influence - Table chronologique, notes, bibliographie - Johann Carl Friedrich Gauß (traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le 30 avril 1777 à Brunswick et mort le 23 février 1855 à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains. Dès 1856, le roi de Hanovre fit graver des pièces commémoratives avec l'image de Gauss et l'inscription Mathematicorum Principi (« au prince des mathématiciens » en latin). Gauss n'ayant publié qu'une partie de ses découvertes, la postérité découvrit surtout l'étendue de ses travaux lors de la publication de ses Oeuvres, de son journal et d'une partie de ses archives, à la fin du xixe siècle. Gauss dirigea l'Observatoire de Göttingen et ne travailla pas comme professeur de mathématiques d'ailleurs il n'aimait guère enseigner mais il encouragea plusieurs de ses étudiants, qui devinrent d'importants mathématiciens, notamment Gotthold Eisenstein et Bernhard Riemann. - En 1796, à seulement 19 ans, Gauss caractérise presque complètement tous les polygones réguliers constructibles à la règle et au compas uniquement (théorème de Gauss-Wantzel), complétant ainsi le travail commencé par les mathématiciens de l'Antiquité grecque. - En août 1799, il soutient son doctorat à l'université de Helmstedt, sur le théorème fondamental de l'algèbre. L'année 1801 voit la publication de Disquisitiones arithmeticae, qui définit pour la première fois les congruences et initie l'arithmétique modulaire, et qui apporte plusieurs importants théorèmes en théorie des nombres, notamment les deux premières preuves de la loi de réciprocité quadratique. - En 1809, il publie un travail d'une importance capitale sur le mouvement des corps célestes qui contient le développement de la méthode des moindres carrés, une procédure utilisée depuis, dans toutes les sciences, pour minimiser l'impact d'une erreur de mesure. Il prouve l'exactitude de la méthode dans l'hypothèse d'erreurs normalement distribuéesnote. Il est dans les années suivantes le premier à envisager la possibilité de géométries non euclidiennes, mais ne publiera jamais ce travail initial8,note 8 « par crainte des cris des Béotiens », selon ses propres termes. Il est également l'auteur de deux des quatre équations de Maxwell, qui constituent une théorie globale de l'électromagnétisme. La loi de Gauss pour les champs électriques exprime qu'une charge électrique crée un champ électrique divergent. Sa loi pour les champs magnétiques énonce qu'un champ magnétique divergent vaut 0, c'est-à-dire qu'il n'existe pas de monopôle magnétique. Les lignes de champ sont donc obligatoirement fermées. (source : Wikipedia)" couverture à peine jaunie, sinon bon exemplaire, intérieur frais et propre, bien complet des 16 planches hors-texte
Göttingen, Dieterischen Buchhandlung, 1841. 4to. Uncut in orig. blank stiff blue wrappers. (2),34,(2- errata leaf) pp. Wide-margined. A few mild brownspots in margins. otherwise a clean and fine copy.
First edition of the peak of ""Gaussian dioptrics"", Gauss' greatest achievement in the field of optics, which has been called ""HIS GREATEST WORK"". He gives the data on the construction of the image when the principal points and foci of the system are given, and finally formulas for a simple lens of nonvanishing thickness are given.""In the same year he finished Dioptrische Untersuchungen (1841), in which he analyzed the path of light through a system of lenses and showed, among other things, that any system is equivalent to a properly chosen single lens. Although Gauss said that he had possessed the theory forty years before and considered it too elementary to publish, it has been labeled his greatest work by one of his scientific biographers (Clemens Schäfer. in Werke, XI, pt. 2, sec. 2, 189 ff.). In any case, it was his last significant scientific contribution."" (DSB).