Helmstadt, C. G. Fleckeisen, 1799. 4to. Bound uncut in a very nice recent pastiche-binding in brown half calf with elaborately gilt spine and marbled paper covered boards. With repair to title-page, not affecting text. Small restorations to upper margin of leaf A2 and A3. Brownspotted throughout. 39, (1) pp. + engraved plate.
Rare first edition of Gauss's first book in which he proved the fundamental theorem of algebra which states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. Gauss received his doctorate degree for this work, which is considered his first great work. It marks the beginning of an extraordinary ten years often referred to as his 'Triumphal Decade' with landmark achievements such as the publication of 'Disquisitiones Arithmeticae' and the calculation of the orbit of the newly discovered planet Ceres. On june 16, 1799, even before the thesis was published, Gauss was awarded the title Doctor Philosophiae after the usual requirements of an oral examination, particularly tedious to Gauss, was dropped. In a letter to Bolyai, Gauss's close friend, Gauss described his thesis: ""The title describes the main objective of the paper quite well though I devote to it only about a third of the space. The rest mainly contains history and criticisms of the works of other mathematicians (name d'Alembert, Bougainville, Euler, de Foncenex, Lagrange, and the authors of compendia - the latter will presumably not be too happy) about the subject, together with diverse remarks about the shallowness of contemporary mathematics"" ""Professor Pfaff, Gauss's formal research supervisor, shared with Gauss an interest in the foundations of geometry, but it is mere speculation that the two discussed this topic. Gauss's dissertation is about the fundamental theorem of algebra. The proof and discussion avoid the use of imaginary quantities through the work is analytic and geometric in nature"" its underlying ideas are most suitably expressed in the complex domain. Like the law of quadratic reciprocity, the fundamental theorem of algebra was a recurring topic in Gauss's mathematical work - in fact, his last mathematical paper returned to it, this time explicitly using complex numbers."" (Gauss, A Biographical Study, p. 41). ""There is only one thing wrong with this landmark in Algebra. The first two words in the title would imply that Gauss had merely added a 'new' proof to others already known. He should have omitted ""nova"". His was the first proof . Some before him had published what they supposed were proofs of this theorem - usually called the fundamental theorem of algebra - but logical and mathematical rigor Gauss insisted upon a proof, and gave the first"" (Bell, Men of Mathematics, p. 32) ""Gauss ranks, together with Archimedes and Newton, as one of the greatest geniuses in the history of mathematics."" (Printing & the Mind of Man). Dibner 114
"GAUSS, CARL FRIEDRICH. - THE METHOD OF LEAST SQUARES IN GERMAN.
Reference : 38464
(1865)
Hannover, Carl Meyer, 1865. 4to. Contemp. modest hcloth. 2 orig. photographs mounted as frontispiece (Gauss-medal). 279,72,(2) pp. 3 plates, 6 tables. Internally clean.
First German edition of this milestone in mathematical statistics, first published in Latin as ""Theoria motus corporum coelestium in sectinibus conicis solem ambientum. 1809."" - In this work Gauss revealed for the first time his method of least squares. On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered the planetoid Ceres, but could only observe it for few days before it was lost in the glare of the Sun until the end of the year. After so many months of not being observed it was not possible to calculate with existing methods at which position it should reappear. However Gauss, at an age of 24, astounded when he in December predicted the exact location at which Ceres again could be observed. Gauss did not reveal how he had calculated the orbit of Ceres. First in 1809 Gauss published his second book ""Theoria motus corporum coelestium in sectionibus conicis solem ambientium"" (the offered item) in which he revealed his new method of orbit calculation. In the first part he dealt with differential equations, conic sections and elliptic orbits, while in the second part, the main part of the work, he showed how to estimate and then to refine the estimation of a planet's orbit using a new method involving minimizing the sum of squared residuals, e.g., the method of least squares. He was able to prove the correctness of the method under the assumption of normally distributed errors. It is here that the Gaussian curve, expressing statistical distribution in probablility, makes its appearance. This work, along with the 'Discuisitiones', was the fruit of the triumphal decade in Gauss' life and established his reputation as a mathematical and scientific genius of the first order. Hald: History of Mathematical Statistics 1750-1930, pp.351-357.
Göttingen, Dieterich, 1828. Small 4to. Extracted from: 'Commentationes Societatis Regiae Scientiarum Gottingensis', Volume 6, pp.99-146. 4to. Modern half morocco with gilt spine lettering. Fine and clean throughout.
First edition of the work which inspired one of the greatest breakthroughs in geometry since Euclid.Euler established the theory of surfaces in his 'Recherches sur la courbure des surfaces', 1767. But Euler's treatment of surfaces is not invariant under a natural notion of isometry with his notion of curvature, for example, the plane and cylinder have different curvatures, although one surface can be bent into the other without stretching or contracting. Such two surfaces are locally alike and one would naturally demand that geometry on these two isometric surfaces are the same. Another way of viewing this is to say that geometry on the surface depends on the geometry of the particular space, in which the surface is embedded.In this work Gauss took a fundamentally different approach to the study of surfaces" in contrast to Euler he represented the points of a surface in terms of two external parameters. Gauss then derived his own notions of the fundamental quantities of surfaces, e.g. arc length, angle between curves, and curvature. The Gauss curvature is related to the Euler curvature, but possesses a fundamentally different property, namely that it is intrinsic, e.g. isometric surfaces have the same curvature at all points. Or, in other words: Geometry (in Gauss' notion) on the surface is independent of the particular geometry of the ambient space. This remarkable result is known as Gauss' ""theorema egregium"". With this work Gauss established a whole new (and more proper) theory of surfaces. In the paper Gauss derived several important theorems about the length, area, and angles of figures on surfaces. But the ""theorema egregium"" has deep roots in the foundation of geometry and was to initiate one of the greatest breakthroughs in geometry since Euclid. To Bernhard Riemann (a student of Gauss) this result suggested that a surface could be regarded as a space in itself with its own geometry, having its own notion of distance, angles, etc. independent of the geometry of some other space containing the surface. This idea became the corner stone of Riemann's famous 'Ueber die Hypothesen, welche der Geometrie zu Grunde liegen', 1867.Norman 880.
Paris, Courcier, 1807. In-4, XX-502 pp., veau havane de Bradel, frise à froid et filet doré en encadrement sur les plats, "Académie de Paris. Prix du concours général" dans un médaillon doré au centre des plats, dos lisse orné de fleurons à froid et de filets et frises dorés, tranches dorées (reliure restaurée, petites taches, quelques rousseurs).
Édition originale de la traduction française, l'originale ayant paru en latin en 1801 sous le titre "Disquisitiones arithmeticae" alors que Gauss n'a que vingt-quatre ans. Il pense déjà à sa rédaction alors qu'il est encore étudiant en 1796, comme nous l'apprend son journal. Tout en incluant les dernières avancées dans ce domaine de la théorie des nombres (comme les travaux de Legendre, Euler ou Lagrange), Gauss en réunit et réorganise les différents champs. Il y introduit la notion de congruence sur les entiers pour la première fois et il prouve l'exactitude de la loi de réciprocité quadratique. Dès sa publication, l'ouvrage est reconnu pour son importance par les experts des mathématiques de l'époque et plus particulièrement en France. Gauss reçoit les félicitations de Lagrange, de Sophie Germain et même du philosophe allemand Hegel. De nombreux mathématiciens postérieurs, tels Galois, Cauchy ou Eisenstein poursuivront le développement de ces travaux. De nos jours, l'ouvrage est toujours une source fondamentale de son domaine, notamment pour le mathématicien canadien Manjul Bhargava, médaille Fields de 2014 et dont les travaux prolongent et approfondissent les apports de Gauss. Neumann, "Carl Friedrich Gauss : Disquisitiones arithmeticae (1801)" in Landmark Writings in Western Mathematics 1640-1940, pp. 303-314 "this work belongs to the 'eternal canon' of mathematics, and thus of human culture". Tampon de la bibliothèque du lycée Henri IV. Voir photographie(s) / See picture(s) * Membre du SLAM et de la LILA / ILAB Member. La librairie est ouverte du lundi au vendredi de 14h à 19h. Merci de nous prévenir avant de passer,certains de nos livres étant entreposés dans une réserve.
"GAUSS, CARL FRIEDRICH & NIELS HENRIK ABEL - ANNOUNCING ""THE PRINCIPLE OF LEAST CONSTRAINT"".
Reference : 41607
(1829)
(Berlin, G. Reimer, 1829). 4to. No wrappers. Extracted from ""Journal für die reine und angewandte Mathematik. Hrsg. von A.L. Crelle"", Bd. 4. - Gauss' paper: pp. 232-35. - Abel's papers: pp. 236-278 and pp. 309-348.
First printing of probably Gauss' most importent work in physics by presenting his ""Principle of Least Action"" , which states that the motion of a system of points which are influenced both by each other and by outside conditions is such as to maximize the agreement with free motion, given the existent constraint. The work is based on his Potential Theory.""In it (the present paper) Gauss stated that the law of least constraint: the motion of a system departs a little as possible from free motion, where departure, or constraint, is measured by the sum of products of masses times the squares of their deviations from the path of free motion. He presented it merely as a new formulation equivalent to the well-known principle of d'Alembert. This work seems obviously related to the old meditations on least aquares, but Gauss wrote to Olbers on 31 January 1829 thai it was inspired by studies of capillarity and other physical problems."" (Kenneth O. May in DSB).The two papers (first printings) by Abel (book-lenghts memoirs) are his last works - he died 1829 and they were published after his death - on the theory of ""elliptic functions"", the discovery of which he shared with Jacobi. In these papers he mentions also the great discoveries published in his memoir 1826 (Memoire sur une proprieté générale d'un classe très-etendu de fonctions transcendentes), which was not published until 1841.Together with these 3 memoirs is found a paper by Alexander von Humboldt: ""Über die bei verschiedenen Völkern üblichen Systeme von Zahlzeichen und über den Ursprung des Stellenwerthes in den indischen Zahlen"", 1829. Pp. 205-231.
"GAUSS, CARL FRIEDRICH and WILHELM WEBER. - TERRESTRIAL MAGNETISM.
Reference : 47035
(1841)
(London, Richard and John E. Taylor, 1841). 8vo. No wrappers. In: ""Scientific Memoirs, selected from Transactions of Foreign Academies of Science... Edited by Richard Taylor."", Vol. II, Part I. Pp. 1-140 and 10, mostly large folded lithographed plates. Gauss a. Weber's memoir: pp. 20-97 with 9 plates (The Magnetic Observatory, Göttingen, Plan of the arrangement of instruments, Drawings of the instruments used and Tables of Observation results). ""Much care has been taken to make the plates... faithful copies of the originals. It has been thought necessary to republish the plates"" (note at end of the memoir).
First English edition of the first published papers from the famous ""Des Magnetischen Vereins im Jahre 1836"" for the study of the magnetism of the earth.""Gauss, one of the keenest and most original mathematical thinkers of all time, was joined by Weber for an intensive study of the nature and intensity of the earth's magnetism.. To enlist the observational help of others, they formed a society of international scope and published their observations annually for a dozen years. As part of their work, a telegraph line was erected in 1834 between the iron-free magnetic observatory and astronomical observatory at Göttingen.""(Dibner, Heralds of Science No. 66).""Gauss and Weber organized the Magnetische Verein (The Magnetic Association, mentioned in the title), which united a worldwide network of observatories. Its Resultate aus den Beobachtungen des magnetischen Vereins appeared in six volumes (1836-1841) and included fifteen papers by Gauss, twenty-three by Weber, and the joint Atlas des Erdmagnetismus (1840). These and other publications elsewhere dealt with problems of instrumentation (including one of several inventions of the bifilar magnetometer), reported observations of the horizontal and vertical components of magnetic force, and attempted to explain the observations in mathematical terms.""(DSB).The offered part contains another importent paper by M.H. JACOBI ""Electro-Magnetic Experiments"", pp. 1-19 and 1 plate which is the first English translation of his importent paper ""Expéeriences électromagnétiques,"" in Bulletin de l’Académie impériale des sciences de St. Pétersbourg, 2 (1837), describingone of the first practical electrical motors.
Grenoble, Imprimerie de Prudhomme, 1870, in-4, 160 pages, Broché, couverture jaune imprimée de l'éditeur, L'un des plus grands textes de géométrie différentielle du XIXe siècle. Rare seconde édition française de la traduction d'Émile Roger des Disquisitiones generales circa superficies curvas de Gauss parues en 1828 dans les Commentationes societatis regiae scientiarum gottingensis. Une première traduction française fut donnée en 1852 dans les Nouvelles annales de mathématiques. La traduction de Roger parut une première fois en 1855, suivie "de notes et d'études sur divers points de la théorie des surfaces et sur certaines classes de courbes". L'édition de 1870 publie à l'identique la traduction des Disquisitiones, mais les "notes" et "études" de Roger ont été amendées et modifiées. "Gauss's interest in geodesy led him to write his General investigations of curved surfaces, which gave the definitive treatment of the differential geometry of surfaces lying in three-dimentional space. It also advanced the radical concept that a surface is a space in itself - a concept implicating the existence of a non-euclidian geometry" (Norman, 880 pour la première édition). Bon exemplaire, tel que paru. Rousseurs sur la couverture. Merzbach, Carl Friedrich Gauss. A Bibliography, 1984, p. 42, 1870a. DSB V, p. 302-304. Couverture rigide
Bon 160 pages
Göttingen, Verlag Göttinger Tageblatt GMBH & Co., 1976,- 77, gr. in-8vo, 141 + 140 S., s./w. ill. Original-Leinenband mit OU.
Phone number : 41 (0)26 3223808
"GAUSS, C.F. - INTRODUCING ABSOLUTE UNITS IN MAGNETISM AND ELECTRICITY
Reference : 43488
(1833)
Leipzig, Johann Ambrosius Barth, 1833. Without wrappers. In ""Annalen der Physik und Chemie. Hrsg.von Poggendorff"", Bd. 28., 6. u. 8. Stück. (Entire issues offered) Pp. 244-448 a. pp. 530-646 a. 4 engraved plates.. Gauss' paper: pp.241-273 a. pp. 591-615. Clean and fine.
First German translation of Gauss' ""Intensitas vis magneticae terrestris ad mensuram absolutam revocata"", Gauss' first work on magnetism, issued the same year as this first German edition, and in which appeared the first systematic use of of absolute units, distance, mass, time to measure nonmechanical quantity (magnetism and electricity). - ""It contains the first measurement of magnetic and electric quantities"" (Magie, A Source Book in Physics, p. 519).The volume contains other notable papers: , by Mitscherlich, Döbereiner, Dutrochet, Graham, Berzelius, Stromeyer, F. Wöhler, Heinrich u. Gustav Rose, Hansteen, Arago, Pelouze, Liebig etc. etc.G. Waldo Dunnington No. 99. - Weaver: 867 (Latin ed.).
"GAUSS, C.F. - INTRODUCING ABSOLUTE UNITS IN MAGNETISM AND ELECTRICITY.
Reference : 47416
(1834)
Paris, Crochard, 1834. Without wrappers. In: ""Annales de Chimie et de Physique, Par MM. Gay-Lussac et Arago."", Tome 57, 2e Series. Cahier 1. 112 pp. (entire issue offered with titlepage to vol. 57). Gauss' paper: p. 5-69. Some brownspots.
First French edition of Gauss' ""Intensitas vis magneticae terrestris ad mensuram absolutam revocata"" (1833), Gauss' first work on magnwetism, in which appeared the first systematic use of of absolute units, distance, mass, time to measure nonmechanical quantity (magnetism and electricity). - ""It contains the first measurement of magnetic and electric quantities"" (Magie, A Source Book in Physics, p. 519).G. Waldo Dunnington No. 99. - Weaver Cat.: 867 (Latin ed.).
P., Crochard, 1834, un volume in 8 relié en demi-basane, dos orné de fers dorés (reliure de l'époque), (coiffe émoussée), pp. 5/69
---- PREMIERE EDITION FRANCAISE ---- "In September 1829 Quetelet visited Göttingen and found Gauss very interested in terrestrial magnetism... In 1832 Gauss presented to the Academy the Intensitas vis magneticae terrestris ad mensuram absolutam revocata (1833) in which appeared the first systematic use of absolute units (distance, mass, time) to measure a nonmechanical quantity. Here Gauss typically acknowledged the help of Weber but did not include him as joint author. Stimulated by Faraday's discovery of induced current in 1831, the pair energetically investigated electrical phenomena. They arrived at Kirchhoff's laws in 1833 and anticipated various discoveries in static, thermal and frictional electricity...". (DSB V p. 305)**2300/M6DE
(Göttingen, Dieterich, 1830). 4to. Partly uncut. Spine closed with paperlabel. In: ""Commentarii Societatis Regiae Scientiarum Gottingensis. Classes Mathematica"", Bd. VII. Pp. (39-) 88. Clean and fine.
First appearance of an importent paper in which Gauss introduced a new method in the calculus of variations and a mathematical treatment of forces of attraction.Gauss had worked on physics already before 1831, publishing ""Uber ein neues allgemeines Grundgesetz der Mechanik"" , which contained the principle of least constraint, and ""Principia generalia theoriae figurae fluidorum in statu aequilibrii"" which discussed forces of attraction. These papers were based on Gauss's potential theory, which proved of great importance in his work on physics. He later came to believe his potential theory and his method of least squares provided vital links between science and nature.""In 1830 appeared Principia generalia theoriae figurae fluidorum in statu aequilibrii, his one contribution to capillarity and an important paper in the calculus of variations, since it was the first solution of a variational problem involving double integrals, boundary conditions, and variable limits.""(DSB).Dunnington, no. 95.- The memoir was reprinted in Ostwald's Klassiker No. 135.
Göttingen, Dieterischen Buchhandlung, 1837. 8vo. Original blue blank boards. Uncut. The first leaves a bit brownspotted. (2),103 pp., 11 tables a. 10 lithographed plates (also showing the magnetic observatory, its equipment and instruments).
First edition of the first volume reporting the results from ""magnetische verein"", which was set up by Gauss and Weber under the inspiration from Humboldt.""Gauss and Weber organized the Magnetische Verein, which united a worldwide network of observatories. Its Resultate aus den Beobachtungen des magnetischen Vereins appeared in six volumes (1836–1841) and included fifteen papers by Gauss, twenty-three by Weber, and the joint Atlas des Erdmagnetismus (1840). These and other publications elsewhere dealt with problems of instrumentation (including one of several inventions of the bifilar magnetometer), reported observations of the horizontal and vertical components of magnetic force, and attempted to explain the observations in mathematical terms."" (DSB).
S.l., RBA, (2018). Un vol. au format in-8 (238 x 163 mm) de 163 pp. Reliure d'édition de plein cartonnage illustré.
''Carl Friedrich Gauss fut baptisé Le Prince des mathématiciens, un titre qui jamais ne lui fut disputé dans les deux siècles qui suivirent sa mort. Parmi les avancées considérables dont il est à l'origine, on retiendra particulièrement celles relatives à la théorie des nombres. La construction à la règle et au compas d'un polygone régulier à 17 côtés, qui occupait les mathématiciens depuis la Grèce classique, constitue par ailleurs l'une de ses premières grandes découvertes''. Très belle condition.
[Crochard] - GAY-LUSSAC ; ARAGO ; GAUSS ; PECLET ; LIEBIG ; BOUSSINGAULT ; Collectif
Reference : 34669
(1834)
1 vol. in-8 cartonnage marbré de l'époque, Chez Crochard, Paris, 1834, 448 pp. avec 3 planches dépliantes. Contient notamment : Mesure absolue de l'Intensité du Magnétisme terrestre (Gauss) - Mémoire sur l'Electricité produite par le frottement (Peclet) - Nouvelles recherches sur la Chaleur spécifique des Corps solides et liquides (Avogadro) - Sur l'acide tanniques (Liebig) ; Note sur un Procédé nouveau d'aimantation (Aimé) ; Sur la Possibilité de constater l'existence des Miasmes (Boussingault)
Rare exemplaire du tome 57 des "Annales de Chimie et de Physique" contenant notamment l'article d'Avogadro "Nouvelles recherches sur la Chaleur spécifique des Corps solides et liquides" (pp. 113-148, DSB, I, 350). Etat moyen (sans le dos, décollé).
Braunschweig, Vieweg, 1877, in-Folio, (32 x 24,5 cm), 4 Bl. (Vortitelbl. etwas staubfleckig und kl. Beschädigung ohne Verlust) + 55 S. (+ 1), Interims Broschüre.
Erste Ausgabe dieser bedeutenden Schrift, zu Ehren von Dedekinds akademischem Lehrer erschienen. "In several papers Dedekind... established the ideal theory that is held to be his masterpiece" (DSB IV, 5) Dedekind hatte 1852 bei Gauss promoviert und folgte ihm 1855 auf dem Göttinger Lehrstuhl.
Phone number : 41 (0)26 3223808
Berlin, P. Stankiewicz, 1887. Cont. hcloth, rebacked with old spine preserved and with original printed wrappers pasted on covers. V,(2),290 pp. A few pencil underlinings.
First German edition of Gauss' ""Theoria Combinationis observationum erroribus minimis obnoxiae"" (2819-22) and with 7 supplements on the ""method of least squares"" from Gauss' other writings.
"GAUSS, C.F. - INTRODUCING ABSOLUTE UNITS IN MAGNETISM AND ELECTRICITY.
Reference : 43489
(1834)
(Paris, Crochard, 1834). Without wrappers as extracted from: ""Annales de Chimie et de Physique, Par MM. Gay-Lussac et Arago."", Tome 57, 2e Series. Titlepage to vol. 57. Pp. 5-70. A few marginal brownspots.
First French edition of Gauss' ""Intensitas vis magneticae terrestris ad mensuram absolutam revocata"" (1833), Gauss' first work on magnwetism, in which appeared the first systematic use of of absolute units, distance, mass, time to measure nonmechanical quantity (magnetism and electricity). - ""It contains the first measurement of magnetic and electric quantities"" (Magie, A Source Book in Physics, p. 519).G. Waldo Dunnington No. 99. - Weaver Cat.: 867 (Latin ed.).
P., Courcier, 1807, un volume grand in 4 (20,5 cm x 26,5 cm), relié plein veau glacé, dos orné de fers et filets dorés, filets dorés sur les plats, toutes tranches dorées, armes de l'Académie de Paris sur les plats (reliure de l'époque), 20pp., (1), 502pp.
---- PREMIERE EDITION FRANCAISE, SECONDE PUBLICATION ET PREMIERE TRADUCTION DE CET OUVRAGE PARU EN LATIN SOUS LE TITRE SUIVANT "Disquisitione arithmetica" ---- TRES BEL EXEMPLAIRE DE PRIX DE CONCOURS GENERAL AUX ARMES DE L'ACADEMIE DE PARIS RELIE EN PLEIN VEAU GLACE, TOUTES TARNCHES DOREES, DOS RICHEMENT ORNE DE FERS ET FILETS DORES, FRISES DORES SUR LES PLATS ---- Ce livre ne connaîtra pas d'autres publication et traduction avant 1889 (traduction allemande) ---- "The discovery of the law of quadratic reciprocity, with other vital developments in the theory of numbers". (Horblit N° 38 1st latin ed.) ---- "In a century of brilliant mathematical contributions, Gauss's share was the foremost, for his intuitive mind leapt from solution to solution of problems ages old and the new ones of expanding science. The substance of the above book had been prepared when Gauss was 18. it holds the important law of quadratric reciprocity (accomplishing what Euler and Legendre did not complete), followed by the notation of binary quadratic forms, the introduction of the theory of congruences, expansion of quadratic forms, and a new theory of the division of the circle". (Dibner N° 114 1st latin ed.) ---- DSB - PMM N° 257 & Norman N° 878 (1st latin ed.)**5988/arm3
in-8 (240x160), XII-VIII-380 p. , illustré de 2 planches H.T. dont une dépliante , relié demi basane époque , dos manquant , cachet
Johann Carl Friedrich Gauss né le 30 avril 1777 à Brunswick et mort le 23 février 1855 à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé «le prince des mathématiciens», il est considéré comme l'un des plus grands mathématiciens de tous les temps. P2-1B
Göttingen, Dieterischen Buchhandlung, 1841. 4to. Uncut in orig. blank stiff blue wrappers. (2),34,(2- errata leaf) pp. Wide-margined. A few mild brownspots in margins. otherwise a clean and fine copy.
First edition of the peak of ""Gaussian dioptrics"", Gauss' greatest achievement in the field of optics, which has been called ""HIS GREATEST WORK"". He gives the data on the construction of the image when the principal points and foci of the system are given, and finally formulas for a simple lens of nonvanishing thickness are given.""In the same year he finished Dioptrische Untersuchungen (1841), in which he analyzed the path of light through a system of lenses and showed, among other things, that any system is equivalent to a properly chosen single lens. Although Gauss said that he had possessed the theory forty years before and considered it too elementary to publish, it has been labeled his greatest work by one of his scientific biographers (Clemens Schäfer. in Werke, XI, pt. 2, sec. 2, 189 ff.). In any case, it was his last significant scientific contribution."" (DSB).
GAUSS C.Fr. & HANSTEEN Christopher (REICH Karin & ROUSSANOVA Elena, eds.)
Reference : W93205
(2015)
Berlin, Walter De Gruyter 2015 xx + 343pp., with 54 illustrations, 25cm., editor's hardcover, in the series "Abhandlungen der Akademie der Wissenschaften zu Göttingen" Neue Folge Band 35, unread, fine condition, ISBN 978-3-11-034791-3, [contains a critical edition of the surviving letters, 1832-1855. A key theme is research on the earth's magnetism], W93205
Berlin, Akademie Verlag, 1977, gr. in-8vo, 202 S., + 4 s./w. Tafeln, Original-Leinenband mit OU.
Phone number : 41 (0)26 3223808
, Gerd Hatje, Staatsgalerie Stuttgart und die Autoren, 1998**, Gebunden, Leinen mit Schutzumschlag, 240 x 325mm., 415S., illustriert.
Der durchgehend farbig bebilderte Band versammelt erstmals vollstandig die rund 1.100 Lithografien des Malerpoeten Marc Chagall. Marc Chagall raumte der Lithografie eine herausragende Stellung in seinem kunstlerischen Ouvre ein. Hier konnte der russisch- franzosische Maler die Farbe, die er als sein eigentliches Medium betrachtete, auch in der Druckgrafik einsetzen. Sie bot nahezu unbegrenzte malerische Freiheiten, denn als einzige Technik erlaubt die Lithografie, das Druckmedium - den Lithostein - direkt zu bearbeiten, sodass der spontane kunstlerische Pinsel- oder Zeichenstrich unmittelbar wiedergegeben werden kann. Die Themen schopfte der Malerpoet und Mythenerzahler des 20. Jahrhunderts aus der judisch-religiosen Erlebniswelt seiner Kindheit und der russischen Volkskunst. Chagall verband sie mit Legenden und Fabeln, mit antiken Mythen und biblischen Inhalten und entfuhrte den Betrachter in die Welt der Liebespaare, der Musikanten und Artisten. Der durchgehend farbig bebilderte Prachtband versammelt die rund 1050 Lithografien Chagalls und vermittelt mit detaillierten Beschreibungen einen Eindruck vom ausserordentlichen Reichtum des lithografischen Oeuvres und seinen starken, gluhenden Farben. Neuer Zustand.
Leipzig, T.B. Teubner, 1899. 4to. Original half calf with gilt spine lettering. XII,(4),208 pp. and numerous facsimiles.