Gauthier-Villars Malicorne sur Sarthe, 72, Pays de la Loire, France 1974 Book condition, Etat : Bon broché, sous couverture imprimée éditeur blanche et bleue, illustrée d'une figure blanche sur fond bleu In-8 1 vol. - 130 pages
nouvelle édition de 1974 Contents, Chapitres : Table, ii, Texte, 128 pages - Liste chronologique des travaux - Notice sur les travaux scientifiques (pages 15 à 112) - Le parallélisme absolu et la théorie unitaire du champ - Élie Joseph Cartan, né le 9 avril 1869 à Dolomieu et mort le 6 mai 1951 à Paris, est un mathématicien et un physicien français. Ses principaux travaux portent sur les applications géométriques des groupes de Lie, la relativité (théorie Einstein-Cartan) et sur la théorie des spineurs. - Ses premières recherches mathématiques concernent les groupes et algèbres de Lie. On lui doit en 1894 une classification de ces dernières sur le corps des nombres complexes. Il se tourne ensuite vers la théorie des algèbres associatives. Vers 1910, il introduit la notion de spineur, vecteur complexe qui permet d'exprimer les rotations de l'espace par une représentation bidimensionnelle et ce, avant la découverte du spin des particules élémentaires en physique quantique. Dès 1922, il contribue à affiner certains outils mathématiques de la relativité générale (tenseurs de Ricci notamment), étendant la géométrie riemannienne en ce qui deviendra la géométrie de Riemann-Cartan. Élie Cartan a introduit et classifié les espaces symétriques. Il introduisit aussi la notion de groupe algébrique, développée sérieusement seulement dans la seconde moitié du vingtième siècle. Théoricien de talent, Élie Cartan possède aussi une grande aptitude à faire comprendre à ses étudiants les concepts les plus difficiles. Il joue un rôle important dans la formation des mathématiciens de lentre-deux-guerres. (source : Wikipedia) couverture un peu jaunie avec de petites taches discretes sur les plats et éraflures sans gravité, infime accroc sur le haut du plat supérieur, intérieur sinon frais et propre, quelques rousseurs sur les tranches n'affectant pas l'intérieur des pages, cela reste un bon exemplaire de cette notice bibliographique sur les travaux d'Elie Cartan
"CARTAN, ÉLIE. - THE EINSTEIN-CARTAN THEORY (ECT) OF GRAVITATION.
Reference : 48912
(1922)
Paris, Gauthier-Villars, 1922. 4to. Bound in 2 uniform full cloth, but of slightly different sizes. Paperlabels pasted to lower part of spines. A faint stamp to titlepage and some of the issues. In ""Comptes Rendus Hebdomadaires des Séances de L'Academie des Sciences"", Tome 174. 1815,(1) pp. (Entire volume offered). Cartan's papers: pp.437-439, 593-595, 734-737, 857-60, 1104-1107.
First edition of these papers, in which Cartan intruced the concept of ""Torsion"", the main inspiration for Einstein in his searce for a unified field theory. The ECT of gravity is a modification of the General relativity Theory""The Einstein-Cartan theory, also known as the Einstein-Cartan-Sciama-Kibble theory, is a classical theory of gravitation similar to general relativity but relaxing the assumption that the affine connection has vanishing antisymmetric part (torsion tensor), so that the torsion can be coupled to the intrinsic angular momentum (spin) of matter, much in the same way in which the curvature is coupled to the energy and momentum of matter. In fact, the spin of matter in curved spacetime requires that torsion is not constrained to be zero but is a variable in the principle of stationary action. Regarding the metric and torsion tensors as independent variables gives the correct generalization of the conservation law for the total (orbital plus intrinsic) angular momentum to the presence of the gravitational field. The theory was first proposed by Élie Cartan in 1922 and expounded in the following few years. Dennis Sciama and Tom Kibble independently revisited the theory in the 1960s, and an important review was published in 1976. Albert Einstein became affiliated with the theory in 1928 during his unsuccessful attempt to match torsion to the electromagnetic field tensor as part of a unified field theory. This line of thought led him to the related but different theory of teleparallelism."" (Wikipedia).
P., Hermann, 1961, un volume in 8 relié en cartonnage éditeur, 232pp.
---- Fils de Elie Cartan, Henri Cartan a été l'un des membres fondateurs du groupe Nicolas Bourbaki. Il unifie par ses travaux les domaines de la géométrie différentielle, de la théorie des fonctions analytiques et de la topologie algébrique. Il caractérise les domaines naturels d'existence des fonctions de plusieurs variables complexes, au-delà desquels elles ne se prolongent pas analytiquement, en introduisant la convexité holomorphe. Cette notion est la base de la théorie de Cartan-Serre qui permet de formuler simplement, en termes de faisceaux, les théorèmes fondamentaux de la théorie des fonctions analytiques de plusieurs variables complexes. Cartan dégage ensuite la notion d'espace annelé (espace topologique où à tout ouvert est associé un anneau), créant ainsi le cadre dans lequel a pu se développer la théorie des espaces analytiques**1072/o5ar
Paris, Gauthier-Villars et Cie, 1925. Uncut in orig. printed wrappers. (Mémorial des Sciences Mathématiques...Fascicule IX). (4),60,(4) pp. Small tears to backstrip, no loss.
First edition. The modern theory of differential geometry grew up in the years following Einstein's introduction of his general theory of relativity, by the work of Elie Cartan (his Géométrie des espaces de Riemann) and Herman Weyl.""Cartan was one of the most profound mathematicians of the last hundred years, and his influence is still one of the most decisive in the development of modern mathematics...Cartan's contributions to differential geometry are no less impressive, and it may be said that he revitalized the whole subject, for the initial work of Riemann and Darboux was being lost in dreary computations and minor results...his guiding principle was a considerable extension of the method of ""moving frames"" of Darboux and Ribaucooour, to which he gave a tremendous flexibility and power, far beyond anything that had been done in classical differential geometry."" (Jean Dieudonne in DSB).
P., Hermann, 1932, un volume in 8, broché, 21pp.
---- EDITION ORIGINALE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1082/CAV.F4
P., Gauthier-Villars, 1937, un volume in 8, broché, couverture imprimée, 6pp., 308pp.
---- EDITION ORIGINALE ---- "Cartan's mathematical work can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**6952/cav.f4
Armand Colin. 1935. In-12. Relié. Bon état, Coins frottés, Dos frotté, Intérieur frais. 256 pages. Annotations au crayon au dos du premier plat et en page de garde.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
9e édition. Programmes de 1931. Enseignement secondaire. Classification Dewey : 372.7-Livre scolaire : mathématiques
Armand Colin. 1931. In-12. Relié. Etat d'usage, Couv. convenable, Dos fané, Intérieur acceptable. 247 pages.. . . . Classification Dewey : 372.7-Livre scolaire : mathématiques
Enseignement Secondaire. Nouvelle édition (3e). Classification Dewey : 372.7-Livre scolaire : mathématiques
P., Hermann, 1935, un volume in 8, broché, couverture imprimée, 53pp., (1)
---- EDITION ORIGINALE ---- "Henri Cartan, fils d'Elie Cartan, a été l'un des membres fondateurs du groupe Bourbaki. Il unifie par ses travaux les domaines de la géométrie différentielle, de la théorie des fonctions analytiques et de la topologie algébrique**1069/o5ar
P., Hermann, 1971, un volume in 8, broché, couverture imprimée, 94pp., (1)
---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1068/6946/o5ar
P., Société mathématique de France, 1914, un volume in 8, broché, 36pp.
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFPRINT) du Bulletin de la Société mathématique de France ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1066/6950/o5ar+cav/e4
P., Gauthier-Villars, 1914, un volume in 4, broché, couverture imprimée, (deuxième plat de couverture légèrement défraîchie), pp. 263/355
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFRPINT) des annales scientifiques de l'Ecole normale supérieure, tome 31 ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1076/6939/o5ar
P., Hermann, 1933, un volume in 8 broché, couverture imprimée, 44pp.
---- EDITION ORIGNALE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**6958/o5ar+cav/f4
P., Hermann, 1934; . P., Hermann, 1934; in 8, 42pp., broché, couverture imprimée
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96) **6949/o5ar+cav/f4(2)
P., Gauthier-Villars, 1937, un volume in 8,broché, couverture imprimée, 6pp., 269pp.
---- EDITION ORIGINALE ---- BEL EXEMPLAIRE ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1061/6957/o5ar+cav.e4/f4
P., Gauthier-Villars, 1914, un volume in 4, broché, couverture imprimée, pp. 149/186
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFRINT) du Journal de mathématiques pures et appliquées ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1079/6936/o5ar
P., Gauthier-Villars, 1910, un volume in 4, broché, couverture imprimée, pp. 109/192
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFPRINT) des Annales scientifiques de l'Ecole normale supérieure, tome 27 ---- Cachet de la bibliothèque de Pierre Theis sur le premier feuillet blanc de garde ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1077/6938/o5ar
P., Institut Poincaré, 1946, un volume in 8, broché, couverture imprimée
---- EDITION ORIGINALE ---- "Henri Cartan, fils d'Elie Cartan, a été l'un des membres fondateurs du groupe Bourbaki. Il unifie par ses travaux les domaines de la géométrie différentielle, de la théorie des fonctions analytiques et de la topologie algébrique"**1070/o5ar
P., Société mathématique de France, 1901, un volume in 8, broché, couverture imprimée, 71pp.
---- EDITION ORIGINALE ---- TIRE-A-PART (OFFPRINT) du Bulletin de la Société mathématique de France, tome 29 ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**6940/o5ar
P., Gauthier-Villars, 1909? un volume in 4, broché, couverture imprimée, pp. 94/156
EDITION ORIGINALE -- TIRE-A-PART (OFFPRINT) des Annales scientifiques de l'Ecole normale supérieure, tome 26 ---- "Cartan's mathematical works can be described as the development of analysis on differentiable manifolds, which many now consider the central and most vital part of modern mathematics and which he was foremost in shaping and advancing. This field centers on Lie groups, partial differential systems, and differential geometry ; these, chiefly through Cartan's contributions, are now closely interwoven and constitute a unified and powerful tool". (DSB III pp. 95/96)**1078/o5ar
Gauthier-Villars et C.ie, Paris. 1922. In-8 p., bross., pp. 65. Extrait du "Journal de Mathématiques", 1922. Fasc. n.° 2. Elie Cartan (1869-1951), matematico francese. Insegnò successivamente nelle università di Montpellier, Lione, Nancy e dal 1909 in quella di Parigi. La maggior parte dei suoi lavori riguardano la teoria dei gruppi; in particolare a lui si devono la teoria della struttura dei gruppi continui e la teoria degli spazi generalizzati che permettono rappresentazioni di nuovi universi. Una delle sue più feconde creazioni fu nel 1922 la concezione dello spazio a parallelismo assoluto, spazio senza curvatura, che Einstein, ignorando il suo lavoro, riscopri' nel 1928. Cosi' Encicl. Larousse,III, p. 473Intonso, ben conservato.
Paris, Gauthier-Villars 1939. 4°. 260 p., avec le poratrait comme frontispice. Broché.
Edition originale, publiée lors de ses 50 ans die vie scientifique. - Avec la liste des travaux par année, - notice sur les travaux scientifiques - Les problèmes d'équivalence. - Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. - Les représentations linéaires de groupes de Lie. - Sur les variétés a connexion projective. - Sur les intégraux de certains espaces homogèenes clos. - Topologie des escpaces représentatifs de groupes de Lie. - En parfait état.
2. Bruxelles, Académie royale de Belgique / Princeton University Press, 1979, in-8°, 233 pp, publisher's cloth with dustwrapper. Edition of the correspondance between Einstein and Cartan. The letters are pubished in their original version (German and French) with a translation in English. The commentary is in French.
BOREL (E.) - HADAMARD (J.) - CARTAN (E.) - CHAZY (J.) - CHEVALLEY (C.) - DENJOY (A.) - FRECHET (M.) - GODEAUX (L.) - MONTEL (P.) - REY (A.) - etc - [sous la direction de MONTEL P. - REY A. - MEILLET A]
Reference : 3754
P., Encyclopédie Française tome 1, 1937, fort volume in 4 relié en cartonnage éditeur
---- EDITION ORIGINALE ---- Parmi les savants qui ont participé à la rédaction de ce volume figurent : E. BOREL, J. HADAMARD, Elie CARTAN, J. CHAZY, C. CHEVALLEY, A. DENJOY, M. FRECHET, L. GODEAUX, Paul MONTEL, Abel REY, etc. ---- De la pensée primitive à la pensée actuelle (progression de la pensée primitive, l'outillage mental des primitifs, vers l'outillage logique par les techniques, naissance des sciences, la pensée mystique de la Chine) - La pensée logique (l'apport de la Grèce, l'esprit moderne, les fondements du rationalisme quantitatif, le progrès de l'outillage intellectuel, les insuffisances du mathématisme cartésien, le rationalisme expérimental...) - La critique contemporaine - Le langage (structure générale des faits linguistiques, langage et logique...) - La science mathématique : nature des mathématiques, principes fondamentaux, structure du raisonnement déductif, le raisonnement par récurrence, le nombre en général, le continu, les fondements de l'algèbre - L'évolution à partir de la Renaissance : la fonction et la géométrie analytique, les opérations fondamentales du calcul infinitésimal, les équations différentielles, les équations aux dérivées partielles, le calcul des variations, le calcul des probabilité - La période moderne - Le nombre et les opérations - Les fonctions - La géométrie - Les probabilités - etc ---- ATTENTION VOLUME PARTICULIEREMENT LOURD ; DES FRAIS DE PORT SUPPLEMENTAIRES SONT A PREVOIR**CAV.G1(5)