15 books for « dirac p a m »Edit

Sort by

‎Kursunoglu (Behram N.) and Wigner (Eugene P.), eds. on Paul Dirac‎

Reference : 100454

(1987)

‎Reminiscences about a Great Physicist : Paul Adrien Maurice Dirac‎

‎Cambridge University Press Malicorne sur Sarthe, 72, Pays de la Loire, France 1987 Book condition, Etat : Bon hardcover, editor's binding, under editor's white printed dust-jacket, illustrated by a sculpture of Dirac face grand In-8 1 vol. - 315 pages‎


‎1 place in frontispiece, portrait of Paul Dirac, by Richard Feynman 1st edition, 1987 Contents, Chapitres : Contents, Contributors, A memorial to P.A.M. Dirac, Preface, Chronology, xviii, Text, 297 pages - 1. Human Side : Margit Dirac : Thinking of my darling Paul - Sevda A. Kursunoglu : Dirac in Coral Gables - Joseph E. Lannutti : Recollections of Paul Dirac at Florida State University - Harish-Chandra : My association with professor Dirac - N. Kemmer : What Paul Dirac meant in my life - Rudolf Peierls : Dirac's way - A.D. Krisch : An experimenter's view of P.A.M. Dirac - Henry King Stanford : Dirac at the University of Miami - Eugene P. Wigner : Remebering Paul Dirac - 2. More scientific ideas : R.H. Dalitz : Another side of Paul Dirac - Abraham Pais : Playing with equations, the Dirac way - Laurie M. Brown and Helmut Rechenberg : Paul Dirac and Werner Heisenberg, a partnership in science - William J. Marciano and Maurice Goldhaber : Dirac's magnetic monopole and the fine structure constant - F. Hoyle : Magnetic monopoles and the halos of galaxies - P.A.M. Dirac : The inadequacies of quantum field theory - P.T. Mathews : Dirac and the foundations of quantum mechanics - 3. Influenced and inspired by association : J.C. Polkinghorne : At the feet of Dirac - Nevill Mott : Reminiscences of Paul Dirac - Harry J. Lipkin : From relativistic quantum theory to the human brain - J. Weber : Dirac in 1962, weak and gravitational radiation interactions - Willis E. Lamb, jr : Schrödinger's cat - Abdus Salam : Dirac and finite field theories - Behram N. Kursunoglu : Dirac's influence on unified field theory - Index Near fine copy, the dust-jacket is fine, very lightly yellowing, it remains clean, inside is fine, no markings, small foxings on the right side of the book, inside remains clean, it's still a nice copy‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR20.00 (€20.00 )

‎"DIRAC, PAUL.‎

Reference : 53720

(1928)

‎The Quantum Theory of the Electron - [FIRST ANNOUNCEMENT OF THE DIRAC EQUATION]‎

‎London, Harrison and Sons, 1928. Royal8vo. In the original printed wrappers. In ""Proceedings of the Royal Society of London, Series A, Vol. 117, No. 778"". Black cloth backstrip pasted on to spine, otherwise a fine copy (without institutional stamps). [Dirac's paper:]Pp 610-624. [Entire issue:] Pp. 541-730, (2), XXXVI, X + 6 plates.‎


‎First printing of Dirac's landmark paper in which he unified quantum mechanics and relativity and implied the existence of antimatter now known as the Dirac Equation"" one of the great triumphs of theoretical physics which brought him on a par with the works of Newton, Maxwell, and Einstein before him. In 1933 he was awarded the Nobel Price in Physics ""for the discovery of new productive forms of atomic theory"", a direct consequence of the present paper. ""[The Dirac Equations] ranks among the highest achievements of twentieth-century science"" (Pais, Inward Bound, p. 290).""In the Dirac equation not only quantum mechanics and the special theory of relativity were married, but also the spin of the electron is contained in it without any ad hoc assumption. But the equation not just beautifully described known phenomena, it did more. It predicted the existence of electrons with negative energy. This was at first held to be a severe problem of the theory but was finally understood as great progress, because negative-energy electrons could be interpreted as hitherto unknown particles. Thus, the existence of new particles was predicted which had all properties of the electron except for the electric charge. These particles were indeed found four years after the equation. Dirac is often quoted to have said that his equation 'contains most of physics and all of chemistry'."" (Brandt, The Harvest of a Century).""Even with the many successful applications of quantum mechanics to spectroscopy and other areas of physics, the theory was not without problems. There was, for example, the question of the relationship between relativity and quantum mechanics. If quantum mechanics was really a fundamental theory of the microcosmos, it ought to be consistent with the fundamental theory of macroscopic bodies, the (special) theory of relativity. Yet it was obvious from the very beginning that this was not the case. It was not too difficult to construct a relativistic quantum wave equation, such as Schrödinger had already done privately and as Oskar Klein, Walter Gordon, and several other physicists did in 1926-27. Unfortunately, this equation, known as the Klein-Gordon equation, did not result in the correct fine structure of hydrogen and it proved impossible to combine it with the spin theory that Pauli had proposed in 1927. The solution appeared in January 1928, when Dirac published his classical paper on 'The Quantum Theory of the Electron', which included a relativistic wave equation that automatically incorporated the correct spin. Dirac's equation was of the same general form as Schrödinger's equation [...] and included matrices with four rows and four columns"" correspondingly the Dirac wave function had four components. Most remarkably, without introducing the spinning electron in advance, the equation contained the correct spin. In a certain, unhistorical sense, had spin not been discovered empirically, it would have turned up deductively from Dirac's theory. The new theory was quickly accepted when it turned out that the Dirac eigenvalue equation for a hydrogen atom resulted in exactly the same energy equation that Sommerfeld had derived in 1916. Dirac's relativistic wave equation marked the end of the pioneering and heroic phase of quantum mechanics, and also marked the beginning of a new phase"" (Kragh, Quantum Generations, p. 167)‎

Logo ILAB

Phone number : +45 33 155 335

DKK22,500.00 (€3,017.74 )

‎"DIRAC, P.A.M. (PAUL ADRIEN MAURICE). - THE RADIATION THEORY, THE BIRTH OF QUANTUM ELECTRODYNAMICS‎

Reference : 47023

(1927)

‎The Quantum Theory of Emission and Absorption of Radiation. (+) The Quantum Theory of Dispersion. (2 Papers).‎

‎London, Harrison And Sons, Ltd., 1927. Royal8vo. Contemp. full cloth. A small stamp on verso of titlepage. In: ""Proceedings of the Royal Society of London"", Series A, Vol. 114. VI,IX,748 pp. (entire volume offered). Dirac's papers: pp. 243-265 a. pp. 710-728. Clean and fine.‎


‎First appearance of these milestone papers in Quantum Physics, constituting the first step in Quantum Field Theory and the invention of the Second Quantifization Method. By these papers Dirac ""gave the foundation for that theory, quantum electrodynamics""(Pais).""A New Radiation Theory. Dirac liked his transformation theory because it was the outcome of a planned line of research and not a fortuitous discovery. He forced his future investigations to fit it. The first results of this strategy were almost miraculous. First came his new radiation theory, in February 1927, which quantized for the first time James Clerk Maxwell’s radiation in interaction with atoms. Previous quantum-mechanical studies of radiation problems, except for Jordan’s unpopular attempt, retained purely classical fields. In late 1925 Jordan had applied Heisenberg’s rules of quantization to continuous free fields and obtained a light-quantum structure with the expected statistics (Bose Einstein) and dual fluctuation properties. Dirac further demonstrated that spontaneous emission and its characteristics—previously taken into account only by special postulates—followed from the interaction between atoms and the quantum field. Essential to this success was the fact that Dirac’s transformation theory eliminated from the interpretation of the quantum formalism every reference to classical emitted radiation, contrary to Heisenberg’s original point of view and also to Schrödinger’s concept of ? as a classical source of field.This work was done during Dirac’s visit to Copenhagen in the winter of 1927. Presumably to please Bohr, who insisted on wave-particle duality and equality, Dirac opposed the ""corpuscular point of view"" to the quantized electromagnetic ""wave point of view."" He started with a set of massless Bose particles described by symmetric ? waves in configuration space. As he discovered by’ playing with the equations, ’ this description was equivalent to a quantized Schrödinger equation in the space of one particle"" this’ second quantization’ was already known to Jordan, who during 1927 extended it into the basic modern quantum field representation of matter. Dirac limited his use of second quantization electromagnetic to radiation: to establish that the corpuscular point of view, once brought into this form, was equivalent to the wave point of view.""(DSB).‎

Logo ILAB

Phone number : +45 33 155 335

DKK8,500.00 (€1,140.04 )

‎"DIRAC, P.A.M. - THE ALGEBRA OF QUANTUM MECHANICS.‎

Reference : 46991

(1926)

‎The Elimination of the Nodes in Quantum Mechanics. (+) Relativity Quantum Mechanics with an Application to Compton Scattering. (2 papers).‎

‎London, Roayl Society, 1926. Royal 8vo. Full cloth. Gilt lettering to spine. In: ""Proceedings of the Royal Society"". Series A, Vol. 111. V,753,LIII pp., textillustr. and plates. (Entire volume offered).‎


‎First appearance of these papers constituting Dirac's own theory of quantum mechanics.""Dirac wanted to establish an algebra for quantum variables, or, as he now termed them, q-numbers... He wanted his q-number algebra to be a general and purely mathematical theory that could then be applied to problem of physics. Although it soon turned out that q-number algebra was equivalent to matrix mechanics, in 1926 Dirac's theory was developed as an original alternative to both wave mechanics and matric mechanics. It was very much Dirac's own theory, and he stuck to it without paying much attention to what went on inmatrix mechanics... In the summer of 1926, Dirac published a new and very general version of q-number algebra, this timepresented as a purely mathematical theory. In this paper (offered here) he did not refer to physics at all... The work had little impact on the physics community but seems to have been appreciated by those who cultivated the mathematical aspects of quantum physics. Most of the results obtained by Dirac in his paper ""The Elimination of the Nodes in Quantum Mechanics"" had been found earlier by the German theorists using a method of matric mechanics, but Dirac was able to improve on some of the results and deduce them from his own system of quantum mechanics.""(Helge Kragh).‎

Logo ILAB

Phone number : +45 33 155 335

DKK3,500.00 (€469.43 )

‎DIRAC Paul Adrien Maurice‎

Reference : 582995

‎Les Principes de la Mécanique Quantique.‎

‎Editions Jacques Gabay Paris 1990 In-8 ( 240 X 160 mm ) de VIII-314 pages, broché sous couverture imprimée. Très bel exemplaire.‎


Phone number : 04 91 42 63 17

EUR120.00 (€120.00 )

‎"DIRAC, P. A. M.‎

Reference : 46940

(1931)

‎Quantized Singularities in the Electromagnetic Field. - [PREDICTION OF ANTI-MATTER]‎

‎London, Harrison and Sons, 1931. Royal8vo. Bound in contemporary full blue cloth with gilt lettering to spine. In ""Proceedings of the Royal Society"", Series A, Vol. 132 & 133, 1933. A very fine and clean copy. [Dirac in Vol 133:] Pp. 61-72. [Entire volume: V(1), 703-706, 701, (1), XIV, 695, IX pp.]‎


‎First printing of Dirac's seminal paper in which he predict anti-matter. ""The prediction and subsequent discovery of the positron rank among the great triumphs of modern physics"". (Pais, The Genius of Science). After Dirac in 1928 had published his famous relativistic wave equation for the electron, he spent the following years working on an interpretation of the negative energy solutions of the equation. In 1930 he published his hole-theory and tried to identify the holes with protons. But, as pointed out by several others, the theory required that these counter particles to the electron must have the same mass as the electron, and also would annihilate into pure energy upon colliding with the electron. In 1931 (in this article) Dirac bit the bullet and postulated: ""A hole, if there is one, would be a new kind of particle, unknown to experimental physics ... We may call such a particle an anti-electron ... Theory at present is quite unable to suggest a reason why there should be any differences between electron and protons"". Thus, Dirac had predicted the existance of both the positron and antiproton. ""Dirac was one of the greatest theoretical physicists in the twentieth century. He is best known for his important and elegant contributions to the formulation of quantum mechanics" for his quantum theory of the emission and absorption of radiation, which inaugurated quantum electrodynamics for his relativistic equation of the electron" for his ""prediction"" of the positron and of antimatter"" and for his ""large number hypothesis"" in cosmology. Not only his results but also his methods influenced the way much of theoretical physics is done today, extending or improving the mathematical formalism before looking for its systematic interpretation."" (DSB).In 1932 C. D. Anderson produced positrons in cloud chambers exposed to radiation. Antiprotons were observed in 1954 by E. G. Segrè and O. Chanberlain.‎

Logo ILAB

Phone number : +45 33 155 335

DKK9,500.00 (€1,274.16 )

‎"DIRAC, P.A.M.‎

Reference : 38884

(1930)

‎A Theory of Electrons and Protons. - [THE THEORY OF HOLES.]‎

‎London, Royal Society, 1930. Royal 8vo. Recent marbled boards. Extracted from ""Proceedings of the Royal Society in London, Series A, Vol. 126"". pp. 360-365.‎


‎First edition of this important paper. ""One of the great difficulties of Dirac's wave equation was from the very beginning, the existance of states of negative energy. The jump from a normal state to such an abnormal state isnot forbidden by any selection rule. Thus, one would expect all electrons to jump into these negative states, contary to experience. The solution of this riddel was given by Dirac'smarvellous theory of holes. Dirac supposed all states of negative energy to be occupied except perhaps a few of small velocity. 'We shall have but an infinite number of electrons in negative-energy states...but if their distribution is exacltly uniform we should expect them to be completely unobseercvable. Only the small departures from uniformity, brought about by some of the negative-energy states being unoccupied, can we hope to obeserve'. He next considers vacant states of 'holes'"" (B.L. van der Waerden).‎

Logo ILAB

Phone number : +45 33 155 335

DKK2,500.00 (€335.30 )

‎Historical Studies in the Physical Sciences - Henry Frankel on Vine, Matthews and Morley - Norriss S. Hetherington on Edwin Hubble - Helge Kragh on Paul Dirac - Arthur Quinn - R. Steven Turner on Justus Liebig - Joe D. Burchfield - M. Norton Wise on Maxwell ‎

Reference : 100896

(1982)

‎Historical Studies in the Physical Sciences - Volume 13, Part 1 (1982) , (The development, reception, and acceptance of the Vine- Matthews - Morley hypothesis - Philosophical values and observation in Edwin Hubble's choice of a model of the universe - Cosmo-physics in the thirties : Towards a history of Dirac cosmology - Repulsive force in England, 1706- 1744 - Justus Liebig versus Prussian chemistry : Reflections on early institute-building in Germany Reviews and bibliographical essays - The British Association and its historians - The Maxwell literature and British dynamical theory )‎

‎University of California Press, History of Science and Technology , Historical Studies in the Physical Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 1982 Book condition, Etat : Bon paperback, editor's white wrappers, title in blue grand In-8 1 vol. - 205 pages‎


‎few black and white illustrations and text-figures 1st edition, 1982 Contents, Chapitres : Henry Frankel : The development, reception, and acceptance of the Vine- Matthews - Morley hypothesis - Norriss S. Hetherington : Philosophical values and observation in Edwin Hubble's choice of a model of the universe - Helge Kragh : Cosmo-physics in the thirties : Towards a history of Dirac cosmology - Arthur Quinn : Repulsive force in England, 1706- 1744 - R. Steven Turner : Justus Liebig versus Prussian chemistry : Reflections on early institute-building in Germany. Reviews and bibliographical essays - Joe D. Burchfield : The British Association and its historians - M. Norton Wise : The Maxwell literature and British dynamical theory wrappers clean, with minor folding tracks on the corner and few foxings and small spots on the top of the front-part, inside is clean, no markings, a near fine copy - pages 1 to 205‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR15.00 (€15.00 )

‎"DIRAC, PAUL.‎

Reference : 43505

(1959)

‎Energy of the Gravitational Field.‎

‎(New York), American physical Society, 1959. Lex8vo. Volume 2, No. 8, April 15, 1959 of ""Physical Review Letters"", entire volume offered. In the original printed blue wrappers. Previous owner's name to top right corner of front wrapper written with a soft pencil. A very nice and clean copy externally as well as internally. Pp. 368-71. [Entire issue: Pp. 329-381].‎


‎First printing of Dirac's paper, a later publication of his speech to the New York Meeting of the American Physical Society in early 1959 in which he applies the Hamiltonian form of gravitational theory to Einstein's general relativity. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. He shared the Nobel Prize in physics in 1933 with Erwin Schrödinger, ""for the discovery of new productive forms of atomic theory.""‎

Logo ILAB

Phone number : +45 33 155 335

DKK950.00 (€127.42 )

‎DIRAC (P.M.A.)‎

Reference : 1790

‎Quelques problèmes de mécanique quantique. La base de la mécanique statistique quantique. Mécanique quantique des systèmes à plusieurs élections. Une théorie des élections et des protons ; pp. 357/400. In Annales de l'Institut Henri Poincaré, volume 1 fascicule IV - Conférence faite à l'Institut Henri Poincaré le 13, 14, 19 et 20 Décembre 1929 -- EDITION ORIGINALE‎

‎P., PUF, 1931, un volume in 8, broché‎


‎---- EDITION ORIGINALE ---- "P.A.M. Dirac, british physicist, worked out a version of quantum mechanics consistent with special relativity. The existence of antiparticles, such as the positron, was one of its predictions. He shared the Nobel Prize for Physics in 1933 with Austrian physicist Erwin Schrödinger". (Hutchinson) ---- RELIE AVEC : BLOCH (L.). Introduction à l'étude des spectres de bandes et de la constitution des molécules ; pp. 309/356 - CARLEMAN (T.). La théorie des équations intégrales singulières et ses applications. Exemples d'équations intégrales singulières. Théorie des équations intégrales à noyau hermitique. Applications ; pp. 401/423**1790/L5AR‎

Phone number : 01 43 25 51 73

EUR39.00 (€39.00 )

‎Landsberg (P.T.), ed. - G.N. Lewis - E. Schrödinger - P. Morrison - F. Hoyle - P.A.M. Dirac - A. Aharony - Y. Ne'eman - A.J. Leggett - R. Penrose - P.C.W. Davies - E.H. Gombrich - W.J. Ong‎

Reference : 100179

(1985)

‎The Enigma of Time Compiled and Introduced by P.T. Landsberg , (1. Irreversibility : The symmetry of time in physics - Irreversibility - Time's arrow and external perturbations -A matter of time - 2. Cosmology and electrodynamics : The asymmetry of time - New ideas of space and time - Thermodynamics, cosmology and the physical constants - 3. Quantum mechanics including Black holes : Time reversal symmetry violation and the H-theorem - Time reversal asymmetry as the fundamental level and its reflection on the problem of the arrow of time - The arrow of time and quantum mechanics - Singularities and time-asymmetry - Black holes thermodynamics and time asymmetry - 4. Time in the arts : Moment and movement in art - Evolution, myth and poetic vision)‎

‎Adam Hilger Ltd, Bristol and Boston Malicorne sur Sarthe, 72, Pays de la Loire, France 1985 Book condition, Etat : Très Bon paperback, editor's black printed wrappers, illustrated by an astrophysical photography, title in yellow grand In-8 1 vol. - 260 pages‎


‎many black and white illustrations Reprinted edition, 1985 (1st was 1982) Contents, Chapitres : Contents, List of Authors, Preface and Acknowledgments, xii, Text, 248 pages - Introduction - Minor comments on some of the reprinted papers - 1. Irreversibility : G.N. Lewis : The symmetry of time in physics - E. Schrödinger : Irreversibility - P. Morrison : Time's arrow and external perturbations - P.T. Landsberg : A matter of time - 2. Cosmology and electrodynamics : F. Hoyle : The asymmetry of time - P.A.M. Dirac : New ideas of space and time - P.T. Landsberg : Thermodynamics, cosmology and the physical constants - 3. Quantum mechanics including Black holes : A. Aharony : Time reversal symmetry violation and the H-theorem - Y. Ne'eman : Time reversal asymmetry as the fundamental level and its reflection on the problem of the arrow of time - A.J. Leggett : The arrow of time and quantum mechanics - R. Penrose : Singularities and time-asymmetry - P.C.W. Davies : Black holes thermodynamics and time asymmetry - 4. Time in the arts : E.H. Gombrich : Moment and movement in art - W.J. Ong : Evolution, myth and poetic vision - Some books on time - Glossary and index near fine copy, no markings‎

Librairie Internet Philoscience - Malicorne-sur-Sarthe
EUR20.00 (€20.00 )

‎"DARWIN, CHARLES (+) NEDELJKO DIRAC [TRANSLATOR].‎

Reference : 61623

(1950)

‎Covekovo poreklo i spolno odabiranje [i.e. Serbian ""Descent of Man""]. 2 vols. - [FIRST BOSNIAN TRANSLATION OF DARWIN'S 'DESCENT OF MAN']‎

‎Novi Sad, Matica Srpska, [Stamparija ""Zmaj""], 1949 & 1950. 8vo. 2 volumes, both in the original printed wrappers. Light wear to extremities, primarily spines. Previous owner's stamp to front free end-paper and his name in pen to first few leaves, otherwise internally fine and clean. 458 pp."" 445, (2) pp.‎


‎Rare second Bosnian translation of Darwin's ""Descent of Man"". As with the first Serbian translation of ""Origin"", it very rarely appears on the market.OCLC only lists two copies, both in Slovenia. National Library of Serbian also hold a copy.Freeman F2501 (Vol 1) and F2502 (vol. 2). ‎

Logo ILAB

Phone number : +45 33 155 335

DKK8,000.00 (€1,072.98 )

‎P.-A.-M. Dirac‎

Reference : R160220595

(1931)

‎Les principes de la mécanique quantique - Recueil de conférences-rapports de documentation sur la physique n° XXI.‎

‎Presses universitaires de France. 1931. In-8. Broché. Etat d'usage, 1er plat abîmé, Dos abîmé, Intérieur acceptable. 314 pages - petite déchirure sur le 1er plat.. . . . Classification Dewey : 530-Physique‎


‎Traduit par Al.Proca et J.Ullmo - Sommaire : I.Le principe de superposition - II. Algèbre symbolique des états et des observables. III - Etats propres et valeurs propres. IV - Représentation des états et des observables. V - La théorie des transformations. VI - Equations du mouvement et conditions de quanta. VII - Applications élémentaires. VIII - Mouvement dans un champ de forces central. IX - Théorie des perturbations. X - Problèmes de collision. XI - Des systèmes qui contiennent plusieurs particules semblables. XII - Théorie du rayonnement. XIII - Théorie relativiste de l'électron. Classification Dewey : 530-Physique‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR379.00 (€379.00 )

‎SALAM ABDUS / HEISENBERG / DIRAC‎

Reference : R320017169

(1991)

ISBN : 2020125579

‎LA GRANDE UNIFICATION - VERS UNE THEORIE DES FORCES FONDAMENTALES?.‎

‎SEUIL². 1991. In-8. Broché. Bon état, Couv. convenable, Dos satisfaisant, Intérieur frais. 123 pages - 1er plat illustré d'un dessin en couleurs.. . . . Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES‎


‎ Classification Dewey : 500-SCIENCES DE LA NATURE ET MATHEMATIQUES‎

Logo SLAM Logo ILAB

Phone number : 05 57 411 411

EUR29.80 (€29.80 )
Get it on Google Play Get it on AppStore
Search - dirac p a m
The item was added to your cart
You have just added :

-

There are/is 0 item(s) in your cart.
Total : €0.00
(without shipping fees)
What can I do with a user account ?

What can I do with a user account ?

  • All your searches are memorised in your history which allows you to find and redo anterior searches.
  • You may manage a list of your favourite, regular searches.
  • Your preferences (language, search parameters, etc.) are memorised.
  • You may send your search results on your e-mail address without having to fill in each time you need it.
  • Get in touch with booksellers, order books and see previous orders.
  • Publish Events related to books.

And much more that you will discover browsing Livre Rare Book !