Paris, Gauthier-Villars, 1879.
Reference : 7741
Première édition. "Ce volume peut-être considéré comme la suite de celui que nous avons publiés, M. Bouquet et moi, il y a plusieurs années sous le titre de "Théorie des fonctions elliptiques. "Briot also published (...) a treatise on Abelian functions (1879). The Académie des Sciences awarded Briot the Poncelet Prize in 1882 for his work in mathematics". DSB 2, 470. Bel exemplaire, à l'état de parution. /// In-4 de XIX, 181, (1) pp. Broché, couverture imprimée. //// /// PLUS DE PHOTOS SUR WWW.LATUDE.NET
Hugues de Latude
Hugues de Latude
B.P. 70046
31290 Villefranche de Lauragais
France
06 09 57 17 07
Books are guaranteed to be complete and in good condition unless otherwise stated.
Paris, Gauthier-Villars, 1879. In-4, XIX-181, Broché, couverture imprimée.
Au moment de la publication de Briot, la théorie des fonctions abéliennes en était encore à ses débuts, avec les contributions de mathématiciens comme Abel, Jacobi et Riemann. Les fonctions abéliennes sont une généralisation des fonctions elliptiques et sont étroitement liées à la théorie des intégrales des courbes algébriques. Les travaux de Briot ont joué un rôle déterminant dans la formalisation de l’étude de ces fonctions, notamment en étendant l’idée de fonctions à valeurs multiples et en fournissant de nouveaux outils pour travailler avec les fonctions à valeurs multiples. M8-B
1879 Gauthier-Villars, 1879, 181 p., demi-maroquin rouge, cuir de la reliure salie, bords des plats frottés, une déchirure sans manque dans la marge de la page d'errata, sinon intérieur propre.
Merci de nous contacter à l'avance si vous souhaitez consulter une référence au sein de notre librairie.
P., 1855/1864,un volume in 4 relié en pleine toile noire (reliure postérieure), (quelques rousseurs)
---- EDITION ORIGINALE ---- "In 1862, through Pasteur's influence, a position of Maître de conférence was created for Hermite at the Ecole Polytechnique. He occupied that position until 1869, when he took over J.M.C. Duhamel's chair as professor of analysis at the Ecole Polytechnique and at the Faculté des Sciences. His textbooks in analysis became classics, famous even outside France... Throughout his lifetime and for years afterward Hermite was an inspiring figure in mathematics. His work exerted a strong influence in his own time, but in the twentieth century a few historians, at most, will have cast a glance at it... He is remembered chiefly in connection with Hermitean forms, a complex generalization of quadratic forms and with Hermitean polynomials. His name also occurs in the solution of the fifth-degree equation by elliptic functions. He first proved the transcendence of e. If Hermite's work were scrutinized more closely, one might find more instances of Hermitean preludes to important discoveries by others...". (DSB VI p. 307)**2648/N4
(Paris: Gauthier-Villars), 1855. 4to. No wrappers. In: ""Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences"", Vol 40, No 5 + 6. Pp. (205-) 260 a. pp. (261-) 324. (2 entire issue offered). Hermite's paper's: pp. 249-256 a. 304-309.
First printing of Hermite's importent paper in which he created the theory of transformations.""Another topic on which Hermite worked and made important contributions was the theory of quadratic forms. This led him to study invariant theory and he found a reciprocity law relating to binary forms. With his understanding of quadratic forms and invariant theory he created a theory of transformations in 1855. His results on this topic provided connections between number theory, theta functions, and the transformations of abelian functions.""""Hermite’s 1855 results became basic for the transformation theory of Abelian functions as well as for Camille Jordan’s theory of ""Abelian"" groups. They also led to Herrnite’s own theory of the fifth-degree equation and of the modular equations of elliptic functions.""(DSB).
Berlin, Stockholm, Paris, Beijer, 1899. 4to. Bound in contemporary half cloth with gilt lettering to spine. In ""Acta Mathematica"", Vol, 22, 1899. Entire volume offered. Stamps to title page, otherwise a fine and clean copy. pp. 1-18" Pp. 89-178" Pp. 201-358.[Entire volume: (4), 388, 2 pp].
First printing of these important papers: POINCARÉ: First edition. ""As soon as he came into contact with the work of Riemann and Weierstrass on Abelian Functions and algebraic geometry, Poincaré was very much attracted by those fields. His papers on these subjects occupy in his complete works as much space as those on automorphic functions, their dates ranging from 1881 to 1911. One of his main ideas in these papers is that of ""reduction"" of Abelian functions. Generalizing particular cases studied b Jacobi, Weierstrass, and Picard, Poincaré proved the general ""complete reducibility"" theorem...""(DSB).VOLTERRA: First edition. As the north and south poles, instead of being fixed points on the earth's surface, wander round within a circle of ab. 5o ft. in diameter, the result is a variability of terrestial latitudes generally. Volterra gives an elaborate mathematical analysis of these yearly fluxtuations.