Paris, Alcan, 1915. In-8, VII, 375 pp. broché.
Reference : ARCA112
Les Grands philosophes
Arcala Livres Anciens
M. Etienne Arminjon
3 place du Terrail
63000 Clermont-Ferrand
France
33 04 73 90 39 27
conformes aux conditions habituelles de la librairie ancienne et moderne. L'emballage des ouvrages est gratuit, les frais de port sont à la charge du destinataire. Le montant des frais d'envoi est variable selon le poids du colis et la valeur des ouvrages. Les livres commandés seront envoyés<br />à réception du règlement de la facture. Les livres présentés sont en conditions d'usage, les défauts mentionnés. Le règlement peut s'effectuer : Par chèque bancaire (uniquement pour la France) ET PAR CARTE BANCAIRE : VISA , EUROCARD, MASTERCARD. <br />
Librairie Scientifique Albert Blanchard Malicorne sur Sarthe, 72, Pays de la Loire, France 1983 Book condition, Etat : Bon broché, sous couverture imprimée éditeur bleu ciel, illustrée d'une vignette avec un portrait de Leibniz In-4 1 vol. - 144 pages
quelques figures dans le texte en noir et blanc 1ere traduction de Jean Peyroux de 1983 Contents, Chapitres : Avertissement du traducteur de novembre 1983 - 1. Leibniz : Nouvelle méthode pour les maxima et les minima - De la géométrie peu accessible et de l'analyse des indivisibles et des indéterminés - D'une ligne issue de lignes - Construction d'une voûte, supplément de géométrie - Nouvelle application du calcul différentiel - Considérations sur la différence qu'il y a entre l'analyse ordinaire et le nouveau calcul des transcendantes - Structure particulière d'un problème - Réponse à quelques difficultés - Mémoire de M. Leibniz touchant son sentiment sur le calcul différentiel - Extrait d'une lettre de Leibniz à Varignon - Nouvel exemple d'analyse pour la science de l'infini, sur les sommes et les quadratures - Continuation de l'analyse des quadratures rationnelles - Lettre à Chrétien Wolf - Remarques - Symbolisme à rappeler du calcul algébrique et infinitésimal - Lettre au R.P. Tournemine, à Dangicourt - 2. Receuil de diverses pièces sur la dispute entre MM. Leibniz et Newton : Lettres diverses et correspondance (41 pages) - 3. Fragment du Traité du sinus du quart du cercle de Blaise Pascal - 4. Fragment de la méthode pour le maximum et le minimum à rechercher de Pierre de Fermat - 5. Notes du traducteur - Le développement du calcul infinitésimal est attribué à Archimède, Fermat, Leibniz et Newton. Cependant, lorsque le calcul infinitésimal a été initialement développé, une controverse fut soulevée sur qui en avait la paternité entre Leibniz et Newton, occultant auprès du grand public l'apport de Fermat. L'algorithme du passage à la limite pour calculer la tangente à une courbe est en effet une invention de Fermat (méthode des maxima et minima) en 1636 et était public dès 1667, car rapporté par Huygens à l'Académie des sciences. Les évolutions ultérieures, de Leibniz et Newton (qui étaient en rapport avec Huygens), portent sur les notations. La contribution majeure de Leibniz fut sans conteste son système de notation. La controverse fut cependant malheureuse car elle a divisé pendant de nombreuses années les mathématiciens anglophones et ceux du reste de l'Europe. Cela a retardé le progrès de l'analyse (mathématiques basées sur le calcul infinitésimal) en Grande-Bretagne pendant longtemps. La terminologie et les notations de Newton étaient clairement moins flexibles que celles de Leibniz. Elles furent malgré tout conservées jusqu'au début du xixe siècle lorsque le travail de l'Analytical Society introduisit avec succès la notation de Leibniz en Grande-Bretagne. Barrow, Descartes, Huygens et Wallis contribuèrent également dans une moindre mesure au développement du calcul infinitésimal. (source : Wikipedia) quelques rousseurs sur le bord des plats, sinon très bon état, intérieur frais et propre, typographie ordinaire - Wrappers very lightly yellowing, with minor foxings on the boarders, else fine copy, no markings, please note that it's an ordinary printing and not a prestigious edition
Leipzig, Grosse & Gleditsch, 1689. 4to. Contemporary full vellum. Faint hand-written title to spine. A small stamp on title-page. In: ""Acta Eruditorum Anno MDCLXXXIX"". (8), 653, (7) pp. and 15 engraved plates. As usual with various browning to leaves and plates. The entire volume offered. Leibniz's papers: pp. 36-38 a. 1 engraved plate" pp. 38-46 pp. 82-89 a. 1 engraved plate" pp. 195-198.
First printing of these extremely important papers, in which Leibniz claimed that he independently of Newton had discovered the principal propositions of his ""Principia"" and which present us with Leibniz's fundamental physico-mathematical theory, his dynamics, his concepts of force, space and time. The ""Tentamen..."" constitutes Leibniz's response to Newton's theories about the motion of the celestial bodies. Leibniz can be said to have anticipated the modern mathematical principle of relativity, as it is his idea of individual co-ordinate systems and his practical rejection of the Galilean co-ordinate system that Newton adopted. Leibniz opposes Newton's ideas of attractions (gravitational forces) and calls them ""occult qualities"". The task of the ""Tentamen..."" was to attain a theory mathematically equivalent to Newton's in accounting for planetary motion and especially for the inverse-square law of Kepler's laws, but physically sound and capable of explaining the causes of phenomena.Newton attacked Leibniz's claim of priority in his anonymously published paper ""Commercium epistolicum"" (Phil. Transactions 1714), and states that ""in those tracts the principal propositions of that book are composed in a new manner, and claimed by Mr. Leibniz as if he had found them himself before the publishing of the said book. But Mr. Leibniz cannot be a witness in his own cause. It lies upon him either to prove that he had found them before mr. Newton, or to quit his claim."" The features of Leibniz's mathematical representation of motion as put forward in ""Tentamen..."" are, (see D.B. Meli: Equivalence and Priority. Newton versus Leibniz. pp. 90-91):- Empty space does not exist. The world is filled with a variety of fluids which are responsible for physical actions, including gravity.- Living force and its conservation are the fundamental notion and principle respectively, in the investigation of nature, however, they do not figure prominently in the study of planetary motion.- Finite and infinitesimal variables are regularly employed in the study of motion and of other physical phenomena. Living force and velocity are finite" solicitation and conatus are infinitesimal.- Accelerated motion, whether rectilinear or curvilinear, is represented as a series of infinitesimal uniform rectilinear motions interrupted by impulses. I call this 'polygonal representation'. Usually the polygon is chosen in such a way that each side is traversed in an equal element of time dt. In polygonal representations accelerations are reduced to a macroscopic phenomenon.- Propositions are often used to safeguard dimensional homogeneity. Constant factors - such as numerical factors, mass, and the element of time - are usually ignored in the calculations.Denys Papin's papers:1. Descriptio Torcularis, cujus in Actis Anni 1688 pag. 646 mentio facta a suit... and 1 plate. Pp. 96-101.2. De Gravitatis Causa et proprietatibus Observationes. Pp. 183-188.3. Examen Machinæ Dn. Perrault. Pp. 189-195 a. 1 plate.4. Rotatilis Suctor et Pressor Hasciacus, in Serenissima Aula Cassellana demonstratus & detectus. Pp. 317-322 a. 1 plate.5. In J.B. Appendicem Illam Ad Perpetuum Mobile, Actis Novemb.A. 1688 p. 592...Pp. 322-324 a. 1 plate.6. Excerpta et Litteris Dn. Dion Papini ad --- de Instrumentis ad flammam sub aqua conservandam. Pp. 485-489 a. 1 plate.With the paper describing and depicting Papin's famous invention of the CENTRIFUGAL PUMP. ( Rotatilis Suctor et Pressor Hasciacus, in Serenissima Aula Cassellana demonstratus & detectus. - The paper offered (no.4).Jakob Bernoulli's papers:1. De Invenienda Cujusque Plani Declinatione, ex unica observatione projectæ a flylo umbræ. Pp. 311-316 a. 1 plate.2. Vera Constructio geometrica Problematum Solidorum & Hypersolidorum, per rectas lineas & circulos. Pp. 586-588 a. 1 plate.3. Novum Theorema Pro Doctrina Sectionum Conicarum. Pp. 586-588 a. 1 engraved plate.
Librairie Philosophique J. Vrin , Vrin Reprise Malicorne sur Sarthe, 72, Pays de la Loire, France 1981 Book condition, Etat : Très Bon broché, sous couverture imprimée éditeur grise In-8 1 vol. - 154 pages
quelques figures dans le texte en noir reprint de 1981, la première édition de 1960 a été assez largement augmentée de 40 pages Contents, Chapitres : Avant-propos, viii, Texte, 146 pages - Itroduction - 1. De l'histoire d'une découverte à la découverte d'une histoire : Découvertes de deux manuscripts leibniziens - Identification du copiste, physionomie de Des Billettes - Leibniz et la dynamique - Données de la correspondance Leibniz-Pelisson - Circonstances et motifs de l'exécution des copies - Echec de la tentative visant le P. Malebranche - Echec auprès de l'Académie des Sciences- 2. L'Essay de dynamique : Etat du texte, correction de la version Foucher de Careil - La controverse de 1687, Leibniz-Catelan - Affermissement de la pensée leibnizienne - Les catégories leibniziennes - La cohérence logique de l'Essay de 1692 - L'opposition force vive et force morte - Le défaut de la conception leibnizienne - 3. La régle générale de la composition des mouvements : Etat du texte, comparaison et datation - Le problème de Tschirnhaus - La solution de Fatio et Duillier - Fatio et Huygens - La solutions de Huygens - La solution de Leibniz - La composition des mouvements - 4. Documents annexés : Version intégrale de l'Essay de dynamique de Leibniz de 1692 - Edition synoptique des deux textes de la Règle générale de la composition des mouvements - Index des noms, des notions, bibliographie - Contribution à l'étude de l'offensive de Leibniz contre la philosophie cartésienne en 1692-1693 par Pierre Costabel - En 1690, Leibniz séjourne à Florence8, où il rencontre Vincenzo Viviani, qui fut élève de Galilée, avec qui il parle de mathématiques. Il se lie d'amitié avec Rudolf Christian von Bodenhausen, précepteur des fils du grand-duc de Toscane Cosme III, à qui il confie le texte encore inachevé de la Dynamica (« Dynamique »), où il définit la notion de force et formule un principe de conservation. Après un bref passage à Bologne, Leibniz se rend à Modène où il poursuit ses recherches historiques. - En 1691, il publie à Paris, dans le Journal des savants, un Essai de dynamique où il introduit les termes énergie et action (source : Wikipedia) "bel exemplaire, frais et propre, exemplaire non coupé - Cette nouvelle édition a été augmentée d'un texte de Pierre Costabel en fin d'ouvrage : ""Contribution à l'étude de l'offensive de Leibniz contre la philosophie cartésienne..."" (22 pages)"
Revue d'Histoire des Sciences - Leibniz (sur) - Michel Blay et Michel Serfati - Eberhard Knobloch - Jacques Bouveresse - Alain Niderst - Olivier Darrigol - Marc Parmentier - Laurence Devillairs - Gérard Simon - Danielle Fauque- Guy Boistel sur R.J. Boscovitch et Esprit Pezenas
Reference : 100352
(2001)
Presses Universitaires de France - P.U.F. , Revue d'Histoire des Sciences Malicorne sur Sarthe, 72, Pays de la Loire, France 2001 Book condition, Etat : Bon broché, sous couverture imprimée éditeur blanche, titre en bleu et noir grand In-8 2 vol. - 274 pages
1ere édition, 2001 "Contents, Chapitres : Pagination : Volume 1, n° 2 (pages 139 à 272, 133 pages), Volume 2, n° 3 (pages 273 à 412, 139 pages), soit un total de 272 pages - VOLUME 1. (1ere partie) : 1. Articles : Michel Blay et Michel Serfati : Présentation - Eberhard Knobloch : Déterminants et élimination chez Leibniz - Michel Serfati : Mathématiques et pensée symbolique chez Leibniz - Jacques Bouveresse : Mathématiques et logique chez Leibniz - 2. Documentation : Alain Niderst : La géométrie et ses réalités, à propos des Eléments de la la géométrie de l'infini de Fontenelle - Olivier Darrigol : Revue critique sur l'ouvrage de Peter Galison, ""Image and Logic"" - Analyses d'ouvrages - VOLUME 2. (2eme partie) : 1. Articles : Marc Parmentier : Démonstrations et infiniment petits dans la Quadratura arithmetica de Leibniz - Michel Blay : De l'apparition subreptice des futures formules de conservation à l'occasion de l'algorithmisation de la science du mouvement au tournant des XVIIe et XVIIIe siècles - Laurence Devillairs : L'immutabilité divine comme fondement des lois de la nature chez Descartes et les éléments de la critique leibnizienne - 2. Varia : Gérard Simon : Optique et perspective, Ptolémée, Alhazen, Alberti - Danielle Fauque : Du bon usage de l'éloge, cas de celui de Pierre Bouguer - 3. Documentation : Guy Boistel : Documents inédits des pères jésuites R.J. Boscovitch et Esprit Pezenas sur les longitudes en mer - Analyses d'ouvrages" "Bon ensemble complet en 2 tomes homogènes de cette série ""Mathématiques et physique Leibnizienne"", dans la Revue d'Histoire des Sciences de 2001, intérieur frais et propre"
Argentinae (i.e Strassburg], Lazarus Zetzner, 1598. 8vo. Very nice 19th century half calf with richly gilt spine. Some browning and spotting, but overall a nice copy. Many woodcut diagrams in the text. Woodcut printer's device to title-page. (24), 992, (32) pp.
Scarce first edition of this seminal publication, which is practically solely responsible for the spreading of both Lullism and Bruno's mnemonic theories in the 17th century. This publication constitutes the standard work on Lull for more than a century and it directly influenced the most significant thinkers of the following century, e.g. Leibnitz, whose dream of a universal algebra was stimulated by the reading of Lull (and Bruno) in the present publication.""In 1598, while the philosopher from Nola (i.e. Bruno) was in prison in Rome, Johann Heinrich Alsted together with the printer Lazarus Zetzner in Strasburg, published a great collection of the works by Raymond Lull and the most significant commentaries on Lullism, among them also some treatises by Bruno. Since then, Bruno's mnemonics was a basic component of all attempts made in the seventeenth century to set up a universal science on the basis of a theory of combinations interpreted in terms of Neo-Platonism... It was also Leibniz who was one of the first to assume similarities between Bruno's theory of the infinite and the Cartesian theory of vortices in an undetermined and infinite universe"" Leibniz had had the opportunity to read these treatises in his capacity as librarian of the Herzog August Library in Wolfenbüttel"". (Blum, p. 110). ""From another of Pierce's Lists we know that he possessed an important collection of Lullian and Lullist texts, namely the Renaissance edition by the famous Strasbourg editor Lazarus Zetzner: ""Raymundi Lulli Opera ea quae ad adinventam ab ipso Artem universalem... pertinent"" (printed first in 1598, then 1609, 1617 and, by his heirs, in 1651). This edition, which was very influential - the young Leibniz, for instance, acquainted himself with Llull through this anthology-, contains several works by Llull himself as well as those Renaissance commentaries on his works by Agrippa of Netteshein, Giordano Bruno..."" (Fidora, p. 181).This highly influential publication of Lull's ""Opera"" through which Leibniz and many of his contemporaries got acquainted with Lull and Bruno, contains seven genuine works by Lull (including the two most important works of the last period of the Art, the ""Ars brevis"" and the ""Ars magna""), four works falsely attributed to Lull, Agrippa's ""In Artem Brevem"" - and Bruno's four highly important commentaries on Lull, being the ""De Lulliano specierum scrutinio"" (pp. 685-97), ""De Lampade combinatoria Lulliana"" (pp. 698-755), ""De Progressu Logicae venationis"" (pp. 756-62) and ""De Lampade venatoria logicurum"" (pp. 763-806), which constitute Bruno's most important logical treatises and his seminal writings on mnemonics. The four treatises originally appeared separately in 1587 and 1588 respectively, and all appear here for the second time (apart from the ""De progressu"", which also appeared together with the first printing of the ""De Lampade venatoria logicorum"" the following year and here thus appears for the third time). The first printings of these works are of impossible scarcity and hardly obtainable. These four groundbreaking works appear together for the first time in the present publication and it is through this second printing of them that 17th century thinkers such as Leibniz got acquainted with them. Raymond Lull (ca. 1232-1315) was one of the most important and influential philosophers and logicians of his time. He is considered a pioneer of several fields of science, now most notably computation theory. His works sparked Leibniz' interest in the field and drove him to his seminal invention. Lull invented an ""art of finding truth"" (often in Lullism referred to as ""The Art""), which centuries later, when read in the present publication, stimulated Leibnitz' dream of a universal algebra. Lull applied this art to basically all subjects studied at the Medieval Universities. ""Lull's metaphysics worked a revolution in the history of philosophy"" (The Cambridge History of Renaissance Philosophy, p. 548). Giordano Bruno (1548-1600) is one of the most significant thinkers of modern times. He prepared the way for the rise of modern philosophy and became a forerunner of modern philosophy and science. His logical commentaries and mnemonic treatises were of special importance to the emerging logic of the 17th century and it is his version of Lullism that comes to dominate this significant strand of thought for more than a century. Having been arrested in 1592 due to alleged heresy, Bruno was subjected to a 6 year long trial that finally condemned him to hanging in 1600, two years after the publication of the four works that came to secure his influence over the following century. ""Bruno burned for philosophy"" he was killed for moral, physical, and metaphysical views that terrified and angered authorities."" (Copenhaver & Schmitt, p. 315).""By far the greatest figure of this generation was Giordano Bruno (1548-1600), whose interest in Llull dates almost exclusively from his sojurns in France and Germany. His activities in this field, which he combined with his other aspects of Reniassance philosophy, are too complex to be treated in any detail here. Suffice it to say with Frances Yates that ""the three strands of the Hermetism, the mnemonics, the Lullism are all interwoven in Bruno's complex personality, mind and mission""...""Perhaps the most important event of Lulliasm of this period was not the appearance of any new figure or work but the publication of an anthology by Lazarus Zetzner of Strasburg, entitled ""Raymundi Lullii, opera ea quae ad adinventam ab ipso Artem universalem"", which, for the next century or so, was to become the standard work on Llull. It is therefore instructive in understanding seventeenth-century Lullism... The first edition of this anthology appeared in Strasburg in 1598. It was reprinted in 1609... reprinted in 1617 and again in 1651... This mixture of Llull, pseudo-Llull, and Renaissance commentaries, emphasizing a general art of discourse, constituted the ""package"" in which Llull was presented to seventeenth-century readers, including Leibniz (note 33: it was apparently the first edition of 1598 that Leibniz read), and it must be kept in mind when discussing their version of Llull."" (Bonner, pp. 67-68). Bruno's works, the first editions of which are all of the utmost scarcity, were generally not reprinted in Bruno's lifetime and new editions of them did not begin appearing until the 19th century. For three centuries his works had been hidden away in libraries, where only few people had access to them. One very significant exception is the four treatises that we find in the present publication. They are among the only of Bruno's treatises to be published again before the 19th century, and as they don't appear again on their own, but here, in THE most important publication of Lull's writings for more than a century, it is through this second printing of these four works that Bruno comes to have his primary influence upon 17th century philosophy and science. His separate publications were simply not accessible to thinkers like Leibniz and could thus not be studied. Also therefore, Zetzners' 1598 publication of Lull and Bruno together proved to be of seminal importance, not only to the spreading of Lullism, but just as much to the spreading of Bruno's even more important theories. ""Raymond Lull (ab. 1232 - 1315), Majorcan writer, philosopher, memorycian (he was later to become a great source of inspiration for Giordano Bruno), logician, and a Franciscan tertiary. He wrote the first major work of Catalan literature. Recently-surfaced manuscripts show him to have anticipated by several centuries prominent work on elections theory. He is sometimes considered a pioneer of computation theory, especially given his influence on Gottfried Leibniz. He is also well known also as a glossator of Roman Law. Lull taught himself Arabic with the help from a slave. As a result, he wrote his ""Ars Magna"", which was intended to show the necessary reasons for the Christian faith. To promote his theory and test its effectiveness, he went to Algiers and Tunis. At the age of 82, in 1314, Lull traveled again to North Africa, where an angry crowd of Muslims stoned him in the city of Bougie. Genoese merchants took him back to Mallorca, where he died at home in Palma the following year."". (Thorndyke)Giordano Bruno was born in Nola in Southern Italy in 1548, and entered the Dominican order in Naples at the age of 18. While pursuing theological studies, he also thoroughly studied the ancient philosophers and began doubting some of the teachings of the Catholic Church. When he was in Rome in 1576, these doubts became known to the authorities of his order, and an indictment for heresy was prepared against him. Before he could be arrested, he escaped and began a long journey which took him to many European countries, among these England, where his most important works are published, until in 1592 he was denounced to the Inquisition and arrested. In 1593 he was taken to Rome, imprisoned, and subjected to a 6 year long trial. He firmly refused to recant his philosophical opinions, and in 1600 he was condemned for heresy, sentenced to death, and burned alive.SALVESTRINI NR. 1.See:Anthony Bonner: Doctor Illuminatus. A Ramon Llull Reader, 1993.Paul Richard Blum: Giordano Bruno. An Introduction, 2012.The Cambridge History of Renaissance Philosophy.Alexander Fidora: Peirce's Account of the Categories and Ramon Llull.