(Paris: Gauthier-Villars), 1908. 4to. No wrappers. In: ""Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences"", Vol 146, No 10. Entire issue offered. Pp. 530-33. [Entire issue: Pp. 511-54].
Reference : 48627
First appearance of Langevin landmark paper in which ""Langevin successfully applied Newtonian dynamics to a Brownian particle and so invented an analytical approach to random processes which has remained useful to this day."" (Lemonsa, Paul Langevin’s 1908 paper, P. 1079). In 1908, three years after Albert Einstein initiated the modern study of random processes with his ground breaking paper on Brownian motion, Paul Langevin devised a very different but likewise successful description of Brownian motion. Both descriptions have since been generalizedinto mathematically distinct but physically equivalent tools for studying an important class of continuous random processes. Langevin's work, like Einstein's, remains current and is widely referenced and discussed.""Langevin's approach to Brownian motion is, in his own words, ''in?nitely more simple'' than Einstein's. Indeed, his paper is apparently more simple and for this reason is attractive as an introduction to the subject. While Einstein, starting from reasonable hypotheses, derived and solved a partial differential equation (i.e., a Fokker-Planck equation) Governing the time evolution of the probability density of a Brownian particle, Langevin applied Newton's second law to a representative Brownian particle. In this way Langevin invented the ''F=ma'' of stochastic physics now called the ''Langevin equation.'' Today it is clear that the apparent simplicity of Langevin's approach was purchased at the cost of forcing into existence new mathematical objects with unusual properties. While Langevin manipulated these objects (Gaussian white noise and the stochastic differential equation) cautiously and intuitively, their formal properties have now been developed and widely applied. Thus Langevin's 1908 paper inspired new mathematics as well as new physics."" (Lemonsa, Paul Langevin’s 1908 paper, P. 1082).""In 1908, Langevin, whose skill in kinetic theory had first been developed when he worked on ionic transport, turned briefly to the theory of Brownian motion developed by Einstein in 1905 and, via a more direct route, by Smoluchowski in 1906. The result was simplified, still-standard treatment which, unlike Smoluchowski’s, produced precisely Einstein’s formula for the mean-square displacement."" (DSB) ,
Herman H. J. Lynge & Son
William Schneider
Silkegade 11
1113 Copenhagen
Denmark
+45 33 155 335
All items may be returned for a full refund for any reason within 14 days of receipt.
Pour la Science - Marcel Berger - Walter Tape - William Thurston et Jeffrey Weeks - J. P. Bourguignon, H. B. Lawson et C. Margerin - Bernard Morin et Jean-Pierre Petit - N. Sloane - E. Belaga - Reuben Hersh et Richard Griego - Carl Pomerance - Jean-Yves Girard - François Gramain - Martin Hellman - Daniel Gorenstein - Gregory Chaitin - G. Ruggiu, F. Boussinot, H. Alaiwan et Tran Van Khai - John Hopcroft - Harry Lewis et Christos Papadimitriou - Larry Stockmeyer et Ashok Chandra - Bradley Efron et Carl Morris - Allan Calder
Reference : Cyb-7312
(1986)
Belin , Bibliothèque Pour la Science Malicorne sur Sarthe, 72, Pays de la Loire, France 1986 Book condition, Etat : Bon relié, cartonnage éditeur blanc, illustré par quatres surfaces minimales In-4 1 vol. - 215 pages
très nombreuses illustrations dans le texte en noir et blanc, quelques-unes en couleurs nouvelle édition française, 1986 Contents, Chapitres : Marcel Berger : Préface - 1. Les formes : Walter Tape : La Topologie des mirages - William Thurston et Jeffrey Weeks : Les variétés à trois dimensions - J. P. Bourguignon, H. B. Lawson et C. Margerin : Les surfaces minimales - Bernard Morin et Jean-Pierre Petit : Le retournement de la sphère - N. Sloane : Les empilements de sphères - E. Belaga : La théorie des noeuds - Reuben Hersh et Richard Griego : Le mouvement brownien et la théorie du potentiel - 2. Nombres et structures : Carl Pomerance : La recherche des nombres premiers - Jean-Yves Girard : Une théorie géométrique des ordinaux - François Gramain : Les nombres transcendants - Martin Hellman : Les mathématiques de la cryptographie à clef révélée - Daniel Gorenstein : Le théorème géant - 3. Logique et calcul : Gregory Chaitin : Les suites aléatoires et les démonstrations mathématiques - G. Ruggiu, F. Boussinot, H. Alaiwan et Tran Van Khai : Le calcul parallèle - John Hopcroft : Les machines de Turing - Harry Lewis et Christos Papadimitriou : L'efficacité des algorithmes - Larry Stockmeyer et Ashok Chandra : Les problèmes intraséquement difficiles - Bradley Efron et Carl Morris : Le paradoxe de Stein - Allan Calder : Mathématiques constructives - Index - Auteurs et Bibliographie cartonnage à peine jauni, coins du plat inférieur à peine émoussés, légère petite déchirure sans manque sur le coin inférieur gauche du plat supérieur, sinon en bon état, intérieur propre, papier à peine jauni