Berlin, Julius Springer, 1923. 8vo. Full cloth. Spine gone. In: ""Mathematische Annalen begründet durch Alfred Clebsch und Carl Neumann."", 88. Bd. (4),312 pp. (Entire volume offered). Hilbert's paper: pp. 151-165. Internally clean and fine.
Reference : 47067
First edition as a continuation of his paper from 1922 ""Neubegründung der Mathematik. Erste Mitteilung"".""This articlee, delivered as a lecture to the deutsche Naturforscher Gesellschaft in Leipzig, September 1922, is a sequel to (neubegründung...), and brings Hilbert's proof theory to maturity. Hilbert here introduces several technical refinements and clarification to his theory. Specifically: (i) he improves the formal system by adding a special sign for formal negation...(ii) he refines his account of the distinction between formal language and the metalanguage....(iii) he outlines a consistency proof for an elementary, quantifier-free formal system of number-theory. (iv) he begins to extend his proof theory to analysis and set theory....sketches a strategy for proving the consistency of a version of Zermel's axiom of choice for real numbers...(etc. etc). (William Ewald in from Kant to Hilbert, vol. II, pp.1134-35).
Herman H. J. Lynge & Son
William Schneider
Silkegade 11
1113 Copenhagen
Denmark
+45 33 155 335
All items may be returned for a full refund for any reason within 14 days of receipt.
Berlin, Julius Springer, 1923. Later full cloth. In: ""Mathematische Annalen begründet durch Alfred Clebsch und Carl Neumann."", 88. Bd. (4),312 pp. Hilbert's paper: pp. 151-165. The whole volume offered.
First edition as a continuation of his paper from 1922 ""Neubegründung der Mathematik. Erste Mitteilung"".""This articlee, delivered as a lecture to the deutsche Naturforscher Gesellschaft in Leipzig, September 1922, is a sequel to (neubegründung...), and brings Hilbert's proof theory to maturity. Hilbert here introduces several technical refinements and clarification to his theory. Specifically: (i) he improves the formal system by adding a special sign for formal negation...(ii) he refines his account of the distinction between formal language and the metalanguage....(iii) he outlines a consistency proof for an elementary, quantifier-free formal system of number-theory. (iv) he begins to extend his proof theory to analysis and set theory....sketches a strategy for proving the consistency of a version of Zermel's axiom of choice for real numbers...(etc. etc). (William Ewald in from Kant to Hilbert, vol. II, pp.1134-35).