Armand Colin Sans date.
Reference : 500120717
Etat correct
Démons et Merveilles
M. Christophe Ravignot
contact@demons-et-merveilles.com
07 54 32 44 40
Rapidité d'envoi Tous nos articles sont expédiés le jour même de la confirmation de la commande Soin de l'emballage Un soin particulier est apporté à l'emballage, vos objets voyagent en toute sécurité. A votre écoute Si toutefois un incident devait survenir lors de l'acheminement de votre paquet, n'hésitez pas à nous contacter, nous mettrons tout en oeuvre pour vous satisfaire, en vous proposant un retour, un remboursement ou toute autre soluton à votre convenance. Professionnalisme Les livres que nous vendons sont pour la plupart des livres anciens, nous tâchons d'être le plus objectif possible quant à leur état.
In-8, plein veau de l'époque, dos à 5 nerfs orné de compartiments fleuronnés, (34), xij, 250 p. et (2), 112 p. [Introduction à l'application de l'algèbre à la géométrie], rousseurs, nombreux graphiques, figures géométriques dans le texte et une planche dépliante. Paris, Estienne Ganeau, Jean Boudot et Laurent Rondet, 1722.
Deuxième édition augmentée. Selon Barbier et Quérard : "La dédicace au duc de Bourgogne est du sieur Boissière, bibliothécaire du Duc du Maine, qui se donne pour l'éditeur de cet ouvrage. On voit dans sa préface qu'il était écrit de la propre main du prince et qu'on peut dire qu'il est de sa composition; que cependant M. De Malezieu y a eu une grande part et aussi lui est-il communément attribué". L'ouvrage serait un bon résumé de la 'Géométrie de Port-Royal'.Bon exemplaire, bien relié à l'époque.
Phone number : 33 01 47 07 40 60
In-folio (320 x 205 mm), plein vélin rigide moucheté à petits rabats, dos lisse titré à la plume (reliure moderne), (2), 158 feuillets chiffrés (marque de l'éditeur en colophon). Lyon, à l'ensegne de la Spaere [Sphère], cheulx Gilles, & Jaques Huguetan frères, 1538.
Seconde édition (la première date de 1520), première partie uniquement. Lettrines, vignette à la sphère et marque de limprimeur "au canon" en colophon, tous gravés sur bois. Il comporte des opérations mathématiques chiffrées, ainsi que des diagrammes et figures géométriques dans le texte.Considéré comme "le meilleur des premiers ouvrages français darithmétique" (Smith), "ce livre fort rare contient un Traité dalgèbre, le plus ancien connu jusquà ce jour écrit en français. On y trouve aussi la notation des exposants que Descartes a mis en usage cent ans plus tard dans sa géométrie" (Brunet, III, col. 842).Lessai se fonde principalement sur les travaux de Nicolas Chuquet, maître de lauteur, dont le traité "Le Triparty" circula sous forme manuscrite et ne fut publié quen 1880. Lauteur, Estienne de La Roche (1470-1530), enseigna larithmétique commerciale pendant 25 ans à Lyon, alors lun des principaux centres commerciaux dEurope.Une seconde partie "Les Tables de divers comptes" publiée sous page de titre et pagination particulières manque à cet exemplaire.(Bechtel L-48. 'The Erwin Tomash Library on the History of Computing', L.6. Smith, 'Rara Arithmetica', p. 130-131).Auréoles en coin supérieur et dans le fond des 34 premiers feuillets Le feuillet de garde contenant plusieurs signatures ex-libris de possesseurs de lépoque a été conservé et relié en tête.Très bon exemplaire, bien relié.
Phone number : 33 01 47 07 40 60
Presses Universitaires de France - P.U.F. , Bibliothèque de Philosophie Contemporaine Malicorne sur Sarthe, 72, Pays de la Loire, France 1951 Book condition, Etat : Bon broché, sous couverture imprimée éditeur, plastifiée fort et grand In-8 1 vol. - 441 pages
1ere édition chez l'éditeur, 1951 Contents, Chapitres : Introduction - La vie et la carrière scientifique de Monge - La géométrie descriptive - La géométrie analytique - La géométrie infinitésimale - Géométrie pure et géométrie moderne - L'analyse mathématique - Les autres travaux scientifiques - La personnalité de Monge et l'unité de son oeuvre - Tableau d'ensemble de l'oeuvre scientifique de Monge - Bibliographie générale (Pièces manuscrites - Monographies sur Monge, articles de dictionnaires et d'encyclopédie - Ouvrages et études de caractère historique - Ouvrages consacrés aux sciences ou à leur histoire) - Index des noms de personnes et table - Gaspard Monge, comte de Péluse, né le 9 mai 1746 à Beaune et mort le 28 juillet 1818 à Paris, est un mathématicien et homme politique français. Son oeuvre considérable mêle géométrie descriptive, analyse infinitésimale et géométrie analytique. Il concourt avec Berthollet, Chaptal et Laplace à la création de l'École d'arts et métiers. Il est, avec Jacques-Élie Lamblardie et Lazare Carnot, un des fondateurs de l'École polytechnique. Il est également membre de la commission des sciences et des arts lors de la campagne d'Italie (17961797), et chargé de mission dans l'expédition d'Égypte (17981799). - Gaspard Monge est l'inventeur de la géométrie descriptive, une forme contemporaine du dessin technique (ou dessin industriel). Il est l'auteur du traité Géométrie descriptive qui s'appuie sur les cours donnés à l'École normale au cours des années 1794 et 1795. La première section aborde la façon de traiter les surfaces, la deuxième les plans tangents aux surfaces courbes et normales, la troisième les intersections des surfaces courbes, la quatrième les autres problèmes géométriques. En 1820, l'ingénieur et mathématicien Barnabé Brisson, disciple de Monge qui participa à la quatrième édition, ajoute au texte d'origine la Théorie des ombres et de la perspective, compilation des cours donnés par son maître à l'École normale et à l'École polytechnique. Gaspard Monge a fait partie des scientifiques français qui ont poussé à l'instauration d'un système de poids et mesures fondé sur le système décimal. Monge a aussi donné son nom à un problème générique de la théorie du transport, connu sous le nom de problème de Monge-Kantorovitch (ou MKP, pour Monge-Kantorovich Problem), ce dernier ayant reçu le « prix Nobel » d'économie en 1975, et est connu pour avoir prouvé l'existence d'une solution optimale à ce problème en 1942. Monge a introduit ce problème dans son Mémoire sur la théorie des déblais et des remblais en 1781. (source : Wikipedia) "couverture plastifiée (transparente), elle est un peu brunie avec des traces de pliures au dos, intérieur sinon propre, papier un peu jauni, cela reste un bon exemplaire de la thèse de René Taton publié ici pour la première fois en 1951 et consacrée au ""père"" de la géométrie descriptive, Gaspard Monge, 1746-1818, l'un des savants français les plus influents de l'Empire"
Descartes (René) - 'Claude David, Marc Leclerc et Jean-Charles Juhel, eds.
Reference : 100565
(1984)
Editions de l'AREFPPI Malicorne sur Sarthe, 72, Pays de la Loire, France 1984 Book condition, Etat : Bon broché, sous couverture imprimée éditeur grise, illustrée d'un portrait de Descartes avec une figure géométrique In-8 1 vol. - 175 pages
nombreuses figures dans le texte édition de 1984 "Contents, Chapitres : Claude David : Du doute à l'inconscient, Préface de Marc Leclerc et Jean-Charles Juhel, table, xxx, Texte, 146 pages - Livre premier : Des problèmes qu'on peut construire en n' employant que des cercles et des lignes droites - Livre second : De la nature des lignes courbes - Livre troisième : De la construction des problèmes solides ou plus que solides - La Géométrie est l'un des trois appendices publiés en 1637 par René Descartes avec le Discours de la méthode, où il présentait une science nouvelle permettant d'obtenir des idées claires sur n'importe quel sujet. La Géométrie et les deux autres traités, la Dioptrique (l'optique) et Les Météores (phénomènes naturels), donnent des exemples des succès obtenus en suivant la méthode. - La Geometrie, publiée en 1637, probablement en partie écrite en 1636 pendant l'impression de Les Météores, est une « uvre de circonstances, hâtivement rédigée ». Elle trouve ses racines dans l'esprit de Descartes (entre autres) lors de ses réflexions sur le problème de Pappus (1631). Avant Descartes, il était entendu que l'algèbre et la géométrie étaient des branches complètement séparées des mathématiques sans connexion entre elles. Son ouvrage est le premier à proposer l'idée d'unir l'algèbre et la géométrie dans une même discipline. Descartes decouvre ce que l'on nomme la géométrie analytique; lui n'y voit à cette époque qu'une « présentation algébrique de la géométrie des anciens ». Cela signifie qu'il réduit les problèmes de géométrie à des calculs de longueur et qu'il traduit les questions de géométrie en équations algébriques. Les travaux les plus récents sur La Géométrie, sa place dans l'uvre de Descartes et dans l'histoire des mathématiques, sont dus au mathématicien André Warusfel qui a réalisé la présentation et les notes de La Géométrie, dans le 3e tome des uvres complètes de Descartes (collection TEL, éd. Gallimard) publié en 2009. L'année suivante, il a soutenu à Paris IV une thèse sur luvre mathématiques de Descartes dans La Géométrie (juin 2010) - On attribue à Descartes l'invention des repères cartésiens : en effet, il associe à un point deux nombres, le nombre x mesurant la distance par rapport à une droite et le nombre y mesurant la distance qui s'appliquent par ordre à cette droite, d'où le nom ordonnée. Ces droites évoquent un système d'axes de coordonnées qu'on appellera plus tard repère cartésien. Le rapport entre x et y permet à Descartes d'écrire l'équation de courbes classiques comme les coniques, les ovales et des courbes du troisième ou quatrième degré. Il classera les courbes en genres en fonction du degré de leur équation. (source : Wikipedia)" couverture propre, à peine jaunie sur les bords, intérieur frais et propre, les 3 premières pages ont été consolidées proprement, elles se détachaient du brochage, le texte est sinon très frais et propre, cette édition avec une nouvelle traduction proche du français moderne reste très proche du texte original. Une longue et brillante préface présente l'importance de ce texte qu'il replace dans l'histoire des mathématiques en montrant son influence dans l'histoire des idées et la philosophie des sciences, références à Popper, Hilbert, Wittgenstein, Félix Klein, aux Bourbaki, à Gödel.
Turc (Albert) - Jean Itard, avant-propos - sur Nicolas I. Lobatschewski ou Lobatchevski, Lobatchevsky
Reference : 101606
(1967)
Librairie Scientifique Albert Blanchard à Paris Malicorne sur Sarthe, 72, Pays de la Loire, France 1967 Book condition, Etat : Bon broché, sous couverture imprimée éditeur rouge In-8 1 vol. - 170 pages
78 figures dans le texte en noir Nouveau tirage chez Blanchard, 1967 (la première édition est paru chez Kundig à Genève) "Contents, Chapitres : Préface - L'espace lobatschewskien, la géométrie lobatschewskienne - Des lignes trigonométriques hyperboliques - Théorie de M. Gérard, relation fondamentale entre les côtés et l'un des angles d'un triangle - Formules relatives aux triangles quelconques, formules relatives aux triangles rectangles - Des parallèles et de l'angle du parallélisme, de l'horicycle et de l'unité naturelle de longueur, de l'hypercycle - Des quadrilatères trirectangles, constructions géométriques élémentaires - Limites de la géométrie lobatschewskienne, de la non existence de la similitude, des aires planes, limites des aires planes - Surfaces des corps ronds, théorème sur les intégrales correspondantes aux volumes, volumes des corps ronds, limites des surfaces et des volumes des corps ronds, conclusion - Selon Jean Itard, cet ouvrage est une ""bonne exposition de la géométrie plane de Lobatschewski"", il explique que David Hilbert a présenté dans un célèbre ouvrage les axiomes qui sont à la base de la géométrie euclienne, et que Lobatchewski acceptent tous ces axiomes sauf celui des parallèles - Grâce aux Mémoires de l'université de Kazan, Lobatchevski a l'occasion d'expliquer les procédés et calculs qu'il a réalisés. Après plusieurs publications en russe, Lobatchevski publie en français en 1837 l'article Géométrie imaginaire dans lequel il présente une géométrie non euclidienne, appelée géométrie hyperbolique, avec comme point de départ non pas une axiomatique, mais un ensemble de formules trigonométriques dans lesquelles le rayon de la sphère est un nombre imaginairen. Il applique ensuite cette géométrie à des calculs d'intégrales définies pour déterminer le volume de certains corps solides. (source : Wikipedia)" dos à peine insolé, la couverture est sinon en très bon état, bords des plats à peine jaunis, intérieur frais et propre, papier à peine jauni, légère petite tache dans la marge de deux pages en début d'ouvrage, infime petit manque de papier dans la marge d'une page de la table en fin d'ouvrage sans manque de texte, cela reste un bon exemplaire de cet ouvrage de référence sur les travaux de Nicolas Lobatcheski à l'instar de l'ouvrage de Barbarien sur la géométrie non euclidienne paru dans les années 1910